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Set Theory

In this chapter we will learn the basics of mathematical reasoning and
some widely used proof techniques.

1.1 Introduction to logic
Mathematics mainly asks questions about whether a given claim (a
statement) is true or false. To answer such questions, it is important
to agree on aspects of the “language of the mathematics”.

A statement (or proposition) is a sentence that is either always true
(which we abbreviate as T) or always false (abbreviated as F). For ex-
ample:

• 2 + 2 = 4. (this statement is T)

• 2 + 3 = 7. (this statement is F)

are all statements. The following are not statements:

• What time is it? (this is a question)

• He is 1.9 metres tall.

• n+ 3 = 2.

The last two examples fail to be statements because we need to specify
who “He” is and what value n takes: for some choices for a number n,
the statement will be true, and for some other choices the statement will
be false. Here “He” and n are free variables (we are ‘free’ to replace
them with any value we like); a sentence containing free variables is
called a predicate.

1.1.1 Implications
Let A and B be statements. An implication is a statement in the form
“If A then B” or “A implies B”. A is called the hypothesis and B is
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1.1. INTRODUCTION TO LOGIC 5

called the conclusion. (Note that we use the word ‘hypothesis’ differ-
ently to how it is used in some other subjects.) We write the implication
symbolically as A =⇒ B.

Informally, we want the implication A =⇒ B to mean “if A is true
then B is true”. These sort of notions are made precise by a system of
logic called propositional calculus. We can write a table with all the
possible truth values for A and B on the left and the resulting value
for A =⇒ B on the right; this table (called a truth table) will then
become the definition of the symbol A =⇒ B — whenever we have
two statements, we can check their truth value and look up the relevant
line in the table to check the truth value of A =⇒ B. The table is as
follows:

A B A =⇒ B
T T T
T F F
F T T
F F T

Note that the truth value of A =⇒ B does not depend upon the actual
statements A or B, but only on their truth values. By definition, the
only time A =⇒ B is false is when A is true and B is false.

1.1.2 Compound statements
One of the properties of the symbol “ =⇒ ” is that it takes two propo-
sitions and returns one (more complicated) proposition. A symbol like
this is called a connective, because they are often used to connect dif-
ferent propositions together.

The basic connectives are

• “not”, denoted by ¬
• “and”, denoted by ∧,

• “or”, denoted by ∨,

• “equivalent (if and only if)”, denoted by ⇐⇒ ,

• “implies”, denoted by =⇒ .

Statements built up using these connectives are compound statements.
For statements A and B, we have

• ¬A is T if A is F and vise-versa. (Note that ¬(¬A) ⇐⇒ A: if
A is T then ¬A is F and so ¬(¬A) is T).

• A ∧ B is T only if both A and B are T.
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• A ∨B is T if either of A or B is T.

• A ⇐⇒ B is T only if A and B have the same truth values.

As earlier, we can also collect these definitions in a truth table:

A B ¬A A ∧B A ∨ B A ⇐⇒ B
T T F T T T
T F F F T F
F T T F T F
F F T F F T

1.1.3 Properties
These connectives have many properties, here are some examples.

Proposition 1.1.1: Properties of logical connectives

Let A, B and C be statements. The following holds:

1. ¬(¬A) ⇐⇒ A (Double negation)

2. ¬(A ∧B) ⇐⇒ ((¬A) ∨ (¬B)) (De Morgan’s Laws)

3. ¬(A ∨B) ⇐⇒ ((¬A) ∧ (¬B)) (De Morgan’s Laws)

4. (A ∧ (B ∨ C)) ⇐⇒ ((A ∧ B) ∨ (A ∧ C))
(Distributivity)

5. (A ∨ (B ∧ C)) ⇐⇒ ((A ∨ B) ∧ (A ∨ C))
(Distributivity)

Proof. All of these can be proved using truth tables. For example, we
can build the following truth table to prove (2):

A B A ∧ B ¬(A ∧ B) ¬A ¬B (¬A) ∨ (¬B)
T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

We now compare the truth values in the two highlighted columns:

A B ¬(A ∧B) ⇐⇒ ((¬A) ∨ (¬B))
T T T
T F T
F T T
F F T

Therefore, ¬(A ∧B) and (¬A) ∨ (¬B) are equivalent.
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Exercise 1.1.2: More properties of logical connectives

Using truth tables, show that if A, B, and C are statements then
the following holds.

1. (A∧B) ⇐⇒ (B ∧A) (Commutativity of logical and)

2. (A ∨ B) ⇐⇒ (B ∨ A) (Commutativity of logical or)

3. ((A ∧B) ∧ C) ⇐⇒ (A ∧ (B ∧ C))
(Associativity of logical and)

4. ((A ∨B) ∨ C) ⇐⇒ (A ∨ (B ∨ C))
(Associativity of logical or)

5. (A ∧ (A =⇒ B)) =⇒ B (Modus ponens)

6. ((A =⇒ B) ∧ (B =⇒ C)) =⇒ (A =⇒ C)
(Transitivity of logical implication)

7. ((A ⇐⇒ B) ∧ (B ⇐⇒ C)) =⇒ (A ⇐⇒ C)
(Transitivity of logical equivalence)

8. A =⇒ (A ∨ B)

9. (A ∧ B) =⇒ A
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Remark 1.1.3

We can conclude from part 3 and 4 of Exercise 1.1.2 that there is
no need to use brackets and we can just write

A ∧ B ∧ C

and
A ∨ B ∨ C

Be warned that brackets are needed when there is a mix of “log-
ical and” and “logical or”! For example, one can check (using a
truth table, for example) that the two statements

(A ∧ B) ∨ C

and
A ∧ (B ∨ C)

are not equivalent, so that

A ∧ B ∨ C

is not well defined!

1.1.4 Converse and contrapositive statements
Let A and B be statements. The converse of the implication A =⇒ B
is the implication B =⇒ A. The contrapositive of the implication
A =⇒ B is the implication ¬B =⇒ ¬A.

Example 1.1.4

Let n be an integer (so n is not a free variable!) and let P be
the statement “if n is even, then n2 is even”. Write down the
converse and contrapositive of P .

Solution.
Let A be the statement “n is even’, and B be the statement “n2 is even”.
Then P is the statement A =⇒ B.

The converse of P is B =⇒ A, that is, if n2 is even, then n is even.

The contrapositive of P is ¬B =⇒ ¬A, that is, if n2 is not even, then
n is not even.

Note that, in the example above, P is true (we shall prove this formally
in the next section), and so are its converse and contrapositive. It is
important to be careful — one example does not allow us to conclude
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that it is always the case that the truth value of an implication is in any
way related to the truth value of its contrapositive or converse, and if
we want to say anything then we need a formal proof. To help us guess
what the relationship may be, if any, here is another example:

Example 1.1.5

Let n be an integer and let Q be the statement “if n is positive,
then n > 17”. Write down the converse and contrapositive of Q.

Solution.
In this case, we have a statement A =⇒ B where A is “n is positive”
and B is “n > 17”. The converse is B =⇒ A; that is, “if n > 17 then
n is positive”; the contrapositive is ¬B =⇒ ¬A, i.e. “if n ≤ 17 then
n is not positive”.

Here, we see that Q is false (it is not true that every positive number
is greater than 17), and so is the contrapositive (there are numbers less
than or equal to 17 which are positive); but the converse of Q (if a
number is greater than 17, then it is positive) is true.

We shall study later the relationship between the truth values of A =⇒
B and its contrapositive (see Proposition 1.2.6). However based on
these examples alone we may say something about the relationship be-
tween A =⇒ B and B =⇒ A: the two are not equivalent.

Warning.
These examples show that even if B =⇒ A it is not necessarily true
that A =⇒ B. In order to prove an implication, it is not enough to
prove the converse implication: the two statements are logically unre-
lated to each other.

Exercise 1.1.6

Let A and B be statements and let P be the proposition (A ∧
B) =⇒ (A ∨ ¬B). Write down the truth tables for P , for the
converse of P , and for the contrapositive of P .

1.2 Proofs

We discuss direct proof and proof by contradiction. As in the last sec-
tion, we will use even (and odd) numbers to illustrate some of the con-
cepts. It will be useful to have a proper definition.
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Definition 1.2.1

An integer n is called even if there exists an integer m such that
n = 2m. It is called odd if there exists an integer m such that
n = 2m+ 1.

We do not define odd numbers to be ‘integers which are not even’, or
even numbers to be ‘integers which are not odd’: we need to check that
our definition matches our usual intuition about evenness and oddness.
This is handled by the following formal proposition.

Proposition 1.2.2

Every integer is exactly one of even or odd.

While Proposition 1.2.2 may appear obvious, it requires proof! We rec-
ommend trying to prove this yourself once you have learned induction.

1.2.1 Direct proof
A direct proof uses a logical sequence of arguments to show that a state-
ment is true. We often use a mix of mathematical expressions and sen-
tences in words to formulate the argumentation. For example, the proof
of property (2) in Proposition 1.1.1 is a direct proof formulated with
a mix of truth tables and words. The words are important to ensure
that the reader can follow the logical argumentation. We give another
example of a direct proof.

Example 1.2.3

Prove that 1 + 2 + 3 + · · ·+ 10 = 55

Proof. While cumbersome, the sum of the first ten positive integers can
be shown to equal 55 by adding the integers 1 through 10 one by one as
follows: We know that 1+2 = 3, so 1+2+3 = 2+3 = 6, which implies
that 1+2+3+4 = 6+4 = 10, so that 1+2+3+4+5 = 10+5 = 15.
Then 1+2+3+4+5+6 = 15+6 = 21 and thus, 1+2+3+4+5+6+7 =
21 + 7 = 28, so that 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 28 + 8 = 36.
Finally, 1+ 2+3+4+5+6+7+8+9 must then equal 36+ 9 = 45,
and we conclude that 1 + 2 + 3 + · · · + 10 = 45 + 10, which is 55 as
claimed.

You may know an easier way to add the integers 1 through 10, given by
the formula

1 + 2 + 3 + · · ·+ 10 =
10 · (10 + 1)

2
.
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This suggests an alternative proof that is more mathematical, but also
shorter:

Alternative proof for Example 1.2.3. Suppose 1+2+3+ · · ·+10 = k
for some integer k. Note that we can swap the order, that is, we also
have k = 10 + 9 + 8 + · · ·+ 1. By adding these two summations term
by term, we have

k + k = (1 + 10)+ (2 + 9)+ (3 + 8)+ · · ·+(10 + 1)
= 11 + 11 + 11 + · · ·+ 11.

Here, the right-hand side contains ten terms, and we get

2 k = 10 · 11 ⇐⇒ k = 1
2
11 · 10 = 55

as required.

To give a direct proof of the implication A =⇒ B, we suppose that A
is true, and use a series of steps to deduce that B must also be true.

Example 1.2.4

Prove that if an integer n is even, then n2 is even.

Proof. Let n be an even integer. By Definition 1.2.1, there exists an
integer m such that n = 2m. Thus n2 = (2m)2 = 4m2 = 2(2m2) =
2k, where we have introduced a new letter k to denote the number 2m2.
Because 2m2 is an integer (if you multiply integers together, the result
is an integer) we have written n2 = 2k where k is an integer; again by
the definition, we conclude that n2 is even.

Observe that the statement of Example 1.2.4 concerns not just one even
number n, but all integers n that are even. Hence, one or even several
examples with n2 even will not constitute a proof. For example, the
fact that the integer 6 is even and so is 62 = 36 is not a proof of the
statement. On the other hand, to show that a statement of the form “all
. . . have a certain property” is false, it suffices to give a counterexam-
ple.

Example 1.2.5

Prove that the statement “all integers are even” is false.

Proof. The number 7 is an integer, but 7 = 2m + 1 for m = 3, so by
Definition 1.2.1, the number 7 is odd. Proposition 1.2.2 implies that 7
is, therefore, not even. Hence, not all integers are even.
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1.2.2 Proof by contraposition
We begin with the promised relationship between an implication A =⇒
B and its contrapositive, ¬B =⇒ ¬A. In the examples above (Exam-
ples 1.1.4 and 1.1.5), we computed the truth values for two implications
along with their contrapositives. We saw that in both cases, the impli-
cation was true if and only if its contrapositive was true. This evidence
is not enough to conclude that it is always the case that implications are
equivalent to their contrapositives; we must state and prove this guessed
equivalence formally.

Proposition 1.2.6

For every pair of statements A and B, we have

(A =⇒ B) ⇐⇒ (¬B =⇒ ¬A).

Proof. Let us compute the truth table for this statement, using the truth
table definitions of the symbols:

A B ¬B ¬A ¬B =⇒ ¬A A =⇒ B
T T F F T T
T F T F F F
F T F T T T
F F T T T T

and thus comparing the highlighted columns,

A B (A =⇒ B) ⇐⇒ (¬B =⇒ ¬A)
T T T
T F T
F T T
F F T

We have proved that

(A =⇒ B) ⇐⇒ (¬B =⇒ ¬A)

is always true.

This proposition and its proof show that an implication is equivalent to
its contrapositive. To give a proof by contraposition of the implication
A =⇒ B, we give a direct proof of the contrapositive, i.e. we assume
that B is false and we deduce that A must also be false.

Example 1.2.7

Use a proof by contraposition to show that, if n is an integer for
which n2 is even, then n is even.
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Solution.
Let n be an integer and let P be the statement “if n2 is even, then n is
even”. The contrapositive of P is “if n is not even, then n2 is not even”.
From Proposition 1.2.2, we know that an integer is either even or odd.
So the contrapositive of P is “if n is odd, then n2 is odd”.

Recall from Definition 1.2.1, that an integer n is odd if there exists an
integer m such that n = 2m+1. Thus n2 = (2m+1)2 = 4m2 +4m+
1 = 2(2m2 + 2m) + 1 = 2t + 1, where we introduce t to denote the
quantity 2m2 + 2m; this value is a sum of products of integers, and so
t is an integer. Thus, n2 is of the form 2t + 1 for some integer t, and
hence is odd by definition.

Exercise 1.2.8

Let n be an integer. Prove the following by contraposition:

(n+ 3 is odd) =⇒ (n is even)

1.2.3 Proof by contradiction

There is another common method of proof which, at first glance, looks
similar to proof by contraposition. It is based on another logical equiv-
alence, which we now state and prove.

Proposition 1.2.9

For every statement A, we have

(¬A =⇒ F) ⇐⇒ A.

Proof. As earlier, we can use a truth table, and compare the highlighted
columns:

A ¬A ¬A =⇒ F (¬A =⇒ F) ⇐⇒ A
T F T T
F T F T

So, to prove that A is true, we assume that A is false, and then derive
something false (a contradiction). This is called a proof by contradic-
tion.

Example 1.2.10

Use proof by contradiction to show that the number 7 is odd.
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Proof. Let A denote the statement “the number 7 is odd”. Hence, ¬A
is the statement “the number 7 is even”. We now assume that A is
false, so ¬A is true, and aim to derive a contradiction. According to
Definition 1.2.1, this means that we can write 7 = 2m, for some integer
m. However, then we must have m = 7/2 = 31

2
, which is not an

integer! By contradiction (Proposition 1.2.9), A is true, that is 7 is
odd.

The following example is very similar to Example 1.2.10 but the state-
ment involves an implication. In such cases, the proof by contradiction
uses a similar logic to that of a proof by contraposition (compare the
assumptions for proof below with your answer for Exercise 1.2.8). On
the other hand, the complete proofs are very different.

Example 1.2.11

Let n be an integer. Prove that if n+ 3 is odd, then n is even.

Proof. Let A be the statement that “n + 3 is odd” nad let B be the
statement “n is even”. We want to prove that A =⇒ B. For a
proof by contradiction, we assume the opposite of what we want to
prove. That is, we assume that A =⇒ B is false, and aim to derive
a contradiction. From the truth table on page 5, we know that this only
occurs if A is true and B is false. Hence, we assume that n + 3 is odd
and that n is odd. By definition, since n + 3 is odd, there exists an
integer m such that n + 3 = 2m + 1. Since we also assume that n is
odd, there exists an integer k such that n = 2k + 1. It then follows that
2m+1 = n+3 = (2k+1)+3 = 2k+4 which implies that k−m = 3

2
.

But m and k are both integers, and so k −m is also an integer — but
this is false, since 3

2
is not an integer. This is a contradiction.

Remark 1.2.12

Note that in our solution to Example 1.2.11, to prove that A =⇒
B by contradiction, we assumed that A is true, B is false and
then derived a contradiction. This is the general strategy to prove
an implication by contradiction.

1.2.4 Proof by double implication
We are often interested in logical equivalences. We often prove an
equivalence like A ⇐⇒ B (“A is true if and only if B is true”)
by proving both A =⇒ B (“if A is true, then B is true”; or, equiv-
alently, “A is true only if B is true”) and B =⇒ A (“B is true if A
is true”). We now state formally the property of ⇐⇒ that makes this
technique valid.
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Proposition 1.2.13

For every pair of statements A and B, we have

(A ⇐⇒ B) ⇐⇒ ((A =⇒ B) ∧ (B =⇒ A)).

Proof. As earlier, this can be proved with a truth table. We leave it as
an exercise.

Example 1.2.14

Let n be an integer, let A be the statement “n is even” and let
B be the statement “n2 is even”. In Example 1.2.4, we proved
A =⇒ B, while in Example 1.2.7, we proved B =⇒ A. By
Proposition 1.2.13, it follows that A ⇐⇒ B that is, “n is even
if and only if n2 is even”.

Exercise 1.2.15

Let n be an integer. Prove the equivalence:

(n+ 3 is odd) ⇐⇒ (n is even)

1.3 Sets

1.3.1 Basic definitions
Definition 1.3.1

A set is a collection of objects, called the elements of the set. We
write x ∈ A if the object x is an element of the set A, otherwise,
we write x /∈ A.

Some examples of sets:

• The “set of all elephants in Africa”.

• A := {a, b, c, d, e}. A is the set whose elements are precisely
a, b, c, d and e.

• The set N := {0, 1, 2, . . .} of natural numbers (in MATHS 120
the set N contains the element 0.)

• The set Z := {. . . ,−2,−1, 0, 1, 2, . . .} of integers.

• The empty set ∅, also denoted {}, that contains no elements.

There are a few ways to define a set:
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Enumeration. In the list above, we defined several sets A, N, and Z
by listing (‘enumerating’) the elements of the set inside braces.

Set-builder notation. This method involves taking a set which we have
already defined and then giving a rule to decide whether elements
of the existing set should be part of the new set. For instance,
suppose we wish to create a set X consisting of all the natural
numbers which are at least 5 and at most 17. Here, our existing
set is N and our rule is “if n ∈ N, then n is in our new set if
5 ≤ n ≤ 17”. We write this symbolically using set-builder no-
tation: our new set is X := {n ∈ N | 5 ≤ n ≤ 17}. Another set
defined in this way is Y := {n ∈ N | n is odd and 1 ≤ n ≤ 17}.

Using an indexing set. This method involves giving an existing set (the
indexing set) together with a rule that gives, for each element of
the old set, a new object; the new set is then the set of all the ele-
ments produced by this rule. For instance, we can define a set Z
to be the set of all numbers that are of the form 2n− 1, where n
is a natural number. In set-builder notation, the new set is written
as follows: Z := {2n − 1 | n ∈ N}. Another example is the set
{3n | n ∈ {1, 2, 3, 4, 5}}.

We can combine set-builder notation and indexing notation in complex
ways. For instance, the set of all even numbers which are at least 3 and
at most 7 is the set { 2n | n ∈ N, 3 ≤ 2n ≤ 7 }.

Definition 1.3.2

The cardinality (or, more casually, the size) of a set S is the
number of distinct elements in S. This number is written as |S|,
and can be either be a natural number or ‘infinity’ (denoted by
the symbol∞). If |S| ∈ N, then S is called a finite set. If S has
infinitely many elements then we call it an infinite set.

We will be able to formulate a more precise definition of cardinality
later; see Remark 1.4.20. For the purposes of this course, though, the
definition here suffices.

Example 1.3.3

{1, 2, 5} is a finite set since its cardinality is |{|1, 2, 5} = 3. The
sets N and Z are infinite sets.



1.3. SETS 17

Definition 1.3.4

A subset of a set A is a set S with the property that every element
of S is also an element of A. We write this S ⊆ A; so S ⊆ A is
shorthand for the statement (x ∈ S) =⇒ (x ∈ A).

Example 1.3.5

We have that N ⊆ Z.

Example 1.3.6

For every set X , we have that X ⊆ X and ∅ ⊆ X .

Warning.
Do not mix up x ∈ A and X ⊆ A. This is illustrated by the next
example.

Example 1.3.7

Let X := {0, 1, 2, 3, 4}. Then the following properties hold:

• ∅ ⊆ X

• ∅ 6∈ X

• {4} ⊆ X

• {4} 6∈ X .

On the other hand, let Y := {∅, 1, 2, 3, {4}}. Then:

• ∅ ⊆ Y (similar to X)

• ∅ ∈ Y (different to X)

• {4} 6⊆ Y (different to X)

• {4} ∈ Y (different to X).

Proposition 1.3.8: Transitivity of set inclusion

Let A,B,C be sets. If A ⊆ B and B ⊆ C, then A ⊆ C.

Proof. Suppose x ∈ A. Then x ∈ B, because A ⊆ B. But B ⊆ C, so
x ∈ C. Thus x ∈ A implies that x ∈ C. So A ⊆ C.
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Definition 1.3.9

Two sets A and B are equal if they have exactly the same ele-
ments. We write this as A = B; this is shorthand for the logical
statement (x ∈ A) ⇐⇒ (x ∈ B).

Example 1.3.10

• {1, 2, 3} = {3, 3, 2, 1} = {x ∈ N | 1 ≤ x ≤ 3 }

• {∅, a, b, c} 6= {a, b, c}

One way to prove that A = B is to prove A ⊆ B and B ⊆ A. This is
sometimes called a proof by double inclusion.

Example 1.3.11

If A = {2n + 1 | n ∈ Z} and B = {2n + 7 | n ∈ Z}, then
A = B.

Indeed, let a ∈ A, i.e. a = 2n + 1 for some n ∈ Z. Then
a = 2(n − 3) + 7 = 2n′ + 7 with n′ = n − 3 ∈ Z and hence
a ∈ B. So A ⊆ B. Similarly one can show that B ⊆ A.

1.3.2 Union, intersection, and set difference

Just like we have symbols (connectives) which allow the building of
complex statements from simpler ones, we have constructions which
allow us to build more complex set structures from simpler ones.

Definition 1.3.12

Let A and B be sets. The union of A and B is the set

A ∪B := {x | x ∈ A or x ∈ B }.

The intersection of A and B is the set

A ∩ B := {x | x ∈ A and x ∈ B }.

The difference of A and B is the set

A \B := {x | x ∈ A and x /∈ B }.
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Example 1.3.13

Let A := {a, b, c, d, e, f, g} and B := {a, e, i, o, u}. Find A ∪ B,
A ∩ B, A \B and B \ A.

Solution.

• A ∪ B = {a, b, c, d, e, f, g, i, o, u},

• A ∩ B = {a, e},

• A \B = {b, c, d, f, g} and

• B \ A = {i, o, u}.

We may use Venn diagrams to illustrate these; see Figure 1.1 on the
next page.

Many properties of the set operations follow directly from the logical
laws we proved earlier in the course, as Proposition 1.1.1 and in Exer-
cise 1.1.2.

Proposition 1.3.14: Properties of set operations

Let A, B and C be sets. The following holds:

1. A ∪ B = B ∪ A; (Commutativity of union)

2. A ∩ B = B ∩ A; (Commutativity of intersection)

3. (A ∪ B) ∪ C = A ∪ (B ∪ C); (Associativity of union)

4. (A∩B)∩C = A∩(B∩C); (Associativity of intersection)

5. A ⊆ A ∪B;

6. A ∩ B ⊆ A.

Proof. We will prove properties (1), (4), and (5), and leave the others
as an exercise.

1. Observe that “A ∪ B = B ∪ A” is equivalent to the statement
“(x ∈ A ∪ B) ⇐⇒ (x ∈ B ∪ A)”. Now note, “x ∈ A ∪ B” is
equivalent (by definition of union) to the statement “(x ∈ A) ∨
(x ∈ B)”. We now use that “P ∨Q ⇐⇒ Q∨P ” (this statement
is proved using a truth table), with P the statement “x ∈ A” and
Q the statement “x ∈ B”, to see that “(x ∈ A) ∨ (x ∈ B)” is
equivalent to “(x ∈ B)∨ (x ∈ A)”. Using the definition of union
again, “(x ∈ B) ∨ (x ∈ A)” is equivalent to “x ∈ B ∪ A”. This
shows that “(x ∈ A ∪ B) ⇐⇒ (x ∈ B ∪ A)” as desired.
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A

B

A ∪B

A ∩B

A \B

Figure 1.1: Venn diagrams for the set operations.
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4. The statement “(A ∩ B) ∩ C = A ∩ (B ∩ C)” is equivalent to
“(x ∈ (A ∩ B) ∩ C) ⇐⇒ (x ∈ A ∩ (B ∩ C))”. Let P , Q,
and R denote the statements “x ∈ A”, “x ∈ B”, and “x ∈ C”
respectively. By definition of the intersection, “x ∈ (A∩B)∩C”
is equivalent to “(P∧Q)∧R” and “x ∈ A∩(B∩C)” is equivalent
to “P ∧ (Q ∧ R)”; but “((P ∧Q) ∧R) ⇐⇒ (P ∧ (Q ∧R))”
by the associative law for logical or, and hence “(x ∈ (A ∩B) ∩
C) ⇐⇒ (x ∈ A ∩ (B ∩ C))”.

5. Let P denote the statement “x ∈ A”, and let Q denote the state-
ment “x ∈ B”. Then “A ⊆ A ∪ B” is equivalent to “P =⇒
(P ∨Q)”, and using a truth table we see that this final statement
is always true.

Proposition 1.3.15: Distributivity of union over intersection

If A, B and C are sets, then

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

Proof. We use the distributivity law for logical statements.

x ∈ A ∪ (B ∩ C) ⇐⇒ (x ∈ A) ∨ (x ∈ B ∩ C)

⇐⇒ (x ∈ A) ∨ ((x ∈ B) ∧ (x ∈ C))

⇐⇒ ((x ∈ A) ∨ (x ∈ B)) ∧ ((x ∈ A) ∨ (x ∈ C))

⇐⇒ (x ∈ A ∪ B) ∧ (x ∈ A ∪ C)

⇐⇒ x ∈ (A ∪ B) ∩ (A ∪ C)

Proposition 1.3.16: Distributivity of intersection over union

If A, B and C are sets, then

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Proof. Exercise.

Definition 1.3.17

Given a set U (which we call a universal set) and a subset S ⊆
U , we define the complement of S in U to be

SC
U := U \ S = {x ∈ U | x /∈ S}.

If the universal set U is clear from the context, we may simply
write SC and refer to it as the complement of S.
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Proposition 1.3.18: De Morgan’s Laws

For any subsets A ⊆ U and B ⊆ U , we have the equality

(A ∪ B)CU = AC
U ∩BC

U and (A ∩ B)CU = AC
U ∪ BC

U .

Proof. Exercise.

Note the strong parallel between Propositions 1.3.15, 1.3.16, and 1.3.18,
and the earlier Proposition 1.1.1 and Exercise 1.1.2. For every logical
law, we get a set-theoretic law. This is because we have a dictionary of
sorts: statements correspond to set membership statements, implication
to set inclusion, logical equivalence to set equality, and negation to set
complements. Despite this strong analogy, it is important to remember
the difference between statements (which can be true or false), and sets
(which are collections of objects).

Warning.
We can only write truth tables for statements: when proving proposi-
tions about sets using truth tables, the column headers should be state-
ments like “x ∈ A ∪ B”, not names of sets. You cannot assign a truth
value to the set A ∪ B, only to the statement that a given object is an
element of A ∪ B.

Example 1.3.19

Let A and B be sets. Prove that A ∩ B ⊆ A ∪ B.

Solution.
By part (6) of Proposition 1.3.14, A ∩ B ⊆ A; by part (5) of the same
proposition, A ⊆ A ∪ B; and by transitivity of set inclusion (Proposi-
tion 1.3.8) we are done.

Example 1.3.20

Let X be a set and let A,B,C ⊆ X . Suppose that A∩B = A∩C
and that AC

X ∩ B = AC
X ∩ C. Prove that B = C.

Solution.
Let b ∈ B. If b ∈ A, then b ∈ A ∩ B = A ∩ C and hence b ∈ C. If
b ∈ AC

X then b ∈ AC
X ∩B = AC

X ∩C and hence also b ∈ C. So B ⊆ C.

A similar proof yields C ⊆ B and thus B = C.

Exercise 1.3.21

Let A and B be sets. Show that if A = A ∪ B, then B ⊆ A;
similarly, show that if A = A ∩B, then A ⊆ B.
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1.3.3 Power sets and Cartesian products

Definition 1.3.22

The collection of all subsets of a set A is called the power set of
A, written P(A).

In other words, S ∈ P(A) if and only if S ⊆ A.

Example 1.3.23

If A = {1, 2, 3}, then

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Observe that in this example, |P(A)| is a lot larger than |A|. This is
generally the case for a finite set A; see Example 1.4.40 on page 38.

Example 1.3.24

Let A and B be sets. Show that P(A ∩ B) = P(A) ∩ P(B).

Solution.
Let S ∈ P(A ∩ B). Then S ⊆ A ∩ B; since A ∩ B is a subset of
both A and B, we have that S ⊆ A and S ⊆ B. Thus S ∈ P(A) and
S ∈ P(B); i.e. S ∈ P(A) ∩ P(B). This shows that P(A ∩ B) ⊆
P(A) ∩ P(B).

Conversely, let S ∈ P(A) ∩ P(B); then S ⊆ A and S ⊆ B, so each
element of S lies in both A and B and thus S ⊆ A ∩ B; i.e. S ∈
P(A ∩ B). This shows that P(A) ∩ P(B) ⊆ P(A ∩B).

Definition 1.3.25

The Cartesian product of sets A and B is the set of ordered
pairs

A× B := {(a, b) | a ∈ A, b ∈ B}

We often write A2 for A× A.
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Remark 1.3.26

More generally, we define the Cartesian product of sets A1, A2,
. . . , An to be the set of ordered n-tuples

A1 × · · · × An := {(a1, . . . , an) | a1 ∈ A1, . . . , an ∈ An} .

Given an n-tuple (a1, . . . , an) for each 1 ≤ i ≤ n, we call ai its
ith component. For any set A, we will often write An for the
n-fold product of A with itself.

Given two n-tuples (a1, . . . , an), (a
′
1, . . . , a

′
n) ∈ A1 × · · · × An, note

that they are equal if and only if all of their respective components are
equal, i.e.,

(a1, . . . , an) = (a′1, . . . , a
′
n) ⇐⇒ a1 = a′1 and · · · and an = a′n.

Example 1.3.27

Given A := {1, 3} and B := {a, b}, we have

A× B = {(1, a), (1, b), (3, a), (3, b)},
A2 = {(1, 1), (1, 3), (3, 1), (3, 3)},
B3 = {(a, a, a), (a, a, b), (a, b, a), a, b, b),

(b, a, a), (b, a, b), (b, b, a), (b, b, b)}.

Example 1.3.28

The set Z × Z = Z2 is the set of all pairs of integers. We can
view this as the set of coordinates of lattice points in the plane;
see Figure 1.2.

Exercise 1.3.29

Let A and B be finite sets, with |A| = m and |B| = n. Show
that |A× B| = mn.

1.4 Functions

1.4.1 Basic definitions
We often have relationships between different sets that are of a different
nature than just the relationships of inclusion and equality. For instance,
consider the set of even numbers E = {. . . ,−2, 0, 2, 4, 6, . . .}; this is a
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Figure 1.2: The elements of Z2 correspond to coordinates of lattice
points.

subset of Z which contains exactly those elements which are obtained
by taking elements of Z and multiplying by 2. (This is the same as
saying that E = {2n | n ∈ Z}.) We have a rule which, given an
element of Z, gives us another number in E in a predictable way.

A rule like this is called a function. We now give a precise definition.

Definition 1.4.1

A function f is defined by the following data:

• a set X called its domain,

• a set Y called its codomain,

• a rule which, to every x ∈ X , assigns a unique element
f(x) ∈ Y , called the image of x under f . We also some-
times say that f maps x to f(x).

We often summarize this data by writing

f : X Y

x f(x).

A function is not the same thing as a formula: whenever we have a
specific rule that produces a single element of the codomain for every
element of the domain, we have a function.
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Example 1.4.2

Here are some examples of functions.

1. The function f : Z→ N given by the rule f(x) := x2. We
can summarize this by writing

f : Z N

x x2.

2. The function g with domain “the set of English words”
and codomain “the set of letters in the English alphabet”,
defined to map every word to its first letter. For example,
g(dolphin) = d.

3. Let X := {1, 2, 3} and Y := {a, b, c, d}; define h : X →
Y by the following rule:

1

2

3

a

b

c

d

Remark 1.4.3

Sometimes, one may encounter an expression that seems to de-
fine a function but really does not. There are various ways this
can happen. For example,

f : N N
x x− 1

may superficially seem to define a function, but it does not. This
is because f(0) = 0 − 1 = −1 does not belong to the codomain
N.
Another example is the “function” g : X → Y with X :=
{1, 2, 3} and Y := {2, 3, 4}, defined by the rule that, for ev-
ery x ∈ X , g(x) is “the” element of Y that is even and such that
g(x) > x. This is not a function, because 1 ∈ X but g(1) is not
uniquely defined: it could be either 2 or 4. You may be tempted
to map 1 to the subset {2, 4}, but this is not an element of the
codomain Y ! We will see more examples later.
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Definition 1.4.4

Let f : X → Y and g : A→ B be functions. We say that f and
g are equal and write f = g if and only if

1. X = A;

2. Y = B;

3. for every x ∈ X , f(x) = g(x).

In other words, two functions are equal if and only if they have the
same domain, the same codomain and every element of their common
domain has the same image.

Example 1.4.5

For each of the following pairs of functions, determine whether
they are equal.

1. (a) f1 : Z→ Z given by f1(x) = x2.

(b) f2 : Z→ N given by f2(x) = x2.

2. (a) g1 : {0, 1} → {0, 1} given by g1(x) = x2.

(b) g2 : {0, 1} → {0, 1} given by g2(x) = x.

Solution.

1. f1 and f2 do not have the same codomain, so f1 6= f2.

2. g1 and g2 have the same domain, the same codomain and g1(0) =
0 = g2(0) and g2(1) = 1 = g2(1) so g1 = g2.

Definition 1.4.6

We sometimes denote the set of all possible functions from a set
X to a set Y by Y X .

Exercise 1.4.7

Let X := {a, b, c} and Y := {1, 2}. Write down all possible
functions with domain X and codomain Y . What is the cardinal-
ity
∣∣Y X

∣∣?
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Exercise 1.4.8

Let X and Y be finite sets. Prove that the cardinality of the set
of all functions from X to Y is given by the formula∣∣Y X

∣∣ = |Y ||X|.

(Hint: when inventing the rule for a function f : X → Y , for
each input value x ∈ X , how many possible choices to do you
have for the output value f(x) ∈ Y ?)

Definition 1.4.9

Given a function f : X → Y and a subset S ⊆ X , we write

f(S) := { f(s) | s ∈ S }

and call this image of S under f .
In the special case where S to be the entire domain X , then we
call f(X) the range) of f .

Remark 1.4.10

Note that f(S) is a subset of the codomain Y , not an element of
this set.

Example 1.4.11

Define a function f : N → Z by the rule f(x) = −x. What are
the domain, codomain, and range of f?

Solution.
The domain of f is N, the codomain is Z, and the range of f is the set

{ 0 } ∪ Z \ N = {0,−1,−2, . . .}.

Exercise 1.4.12

Let X = {1, 2, 3} and Y = {a, b}. Define two (different) func-
tions with domain X and codomain Y that do not have the same
range.
Can you do the same for two functions with domain Y and
codomain X? If yes, define them; if no, explain why not.
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1.4.2 Injective, surjective and bijective functions

Definition 1.4.13

A function f : X → Y is called

• injective if, for every x, x′ ∈ X , f(x) = f(x′) implies
x = x′;

• surjective if, for every y ∈ Y , there exists x ∈ X such
that f(x) = y;

• bijective if it is injective and surjective.

Example 1.4.14

• Let X = {1, 2, 3} and Y = {a, b, c}, then:

– The function from X to Y given by f(1) = b, f(2) =
c, f(3) = a is bijective.

– The function from X to Y given by f(1) = f(2) =
b, f(3) = c is neither injective nor surjective.

• If X = {1, 2, 3} and Y = {a, b, c, d}, then the function
from X to Y given by f(1) = b, f(2) = c, f(3) = a is
injective but not surjective.

• If X = {1, 2, 3, 4} and Y = {a, b, c}, then the func-
tion from X to Y given by f(1) = b, f(2) = c, f(3) =
a, f(4) = b is surjective but not injective.

Exercise 1.4.15

Prove that a function f : X → Y is surjective if and only if
f(X) = Y .

Example 1.4.16

Let f : Z2 → Z where f(a, b) = a + b. Is f injective? Is f
surjective?

Solution.
f is not injective since, for example, f(0, 0) = 0 = f(1,−1). f is
surjective since, for every y ∈ Z, we have (y, 0) ∈ Z2 and f(y, 0) = y.
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Example 1.4.17

Let f : Z2 → Z2 where f(a, b) = (a + b, 2a− 3b). Show that f
is injective but not surjective.

Solution. • We first show that f is injective. Let (a, b), (c, d) ∈ Z2

such that f(a, b) = f(c, d). We want to show that (a, b) = (c, d).
Since f(a, b) = f(c, d), we have (a+b, 2a−3b) = (c+d, 2c−3d)
and hence

a+ b = c+ d

2a− 3b = 2c− 3d.

By adding three times the first equation to the second one, we get
5a = 5c hence a = c and b = d. It follows that (a, b) = (c, d)
and f is injective.

• We now consider surjectivity of f . Let (x, y) be an element of
the codomain Z2. We must find (a, b) in the domain Z2 such that
f(a, b) = (x, y). Using the definition of f , this is (a + b, 2a −
3b) = (x, y), in other words:

a+ b = x

2a− 3b = y

Adding three times the first equation to the second one, we get
5a = 3x+ y. This does not always have a solution. For example,
if x = 0 and y = 1, then this becomes 5a = 1, which has no
solution with a ∈ Z. It follows that f is not surjective.

Proposition 1.4.18: Functions on finite sets

Let X and Y be finite sets, with |X| = n and |Y | = m. Let f be
a function with domain X and codomain Y .

1. If n > m, then f is not injective.

2. If n < m, then f is not surjective.

3. If n = m, then f is injective if and only if it is surjective.

Proof. Write X = {x1, . . . , xn}, with x1, . . . , xn all distinct.

1. Let n > m. Suppose by contradiction that f is injective. Then
each input value must have a distinct output value, so |f(X)| =
|{f(x1), . . . , f(xn)}| = n. But this contradicts the assumption
that the codomain has fewer than n elements.
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2. Since n < m, f(X) = {f(x1), . . . , f(xn)} must be a proper
subset of Y , so f is not surjective.

3. We assume n = m, and prove the conclusion by double implica-
tion. First, if f is injective, then the elements f(x1), . . . , f(xn)
are all distinct, so |f(X)| = |{f(x1), . . . , f(xn)}| = n = m
and hence f(X) = Y and f is surjective. Conversely, if f
is surjective, then Y = f(X) = {f(x1), . . . , f(xn)}. Since
|Y | = m = n, the elements f(x1), . . . , f(xn) must all be dis-
tinct and so f is injective.

Exercise 1.4.19

Use Proposition 1.4.18 parts (1) and (2) to deduce that if X and
Y are finite sets, and if f : X → Y is a bijection, then |X| = |Y |.

Remark 1.4.20

Earlier we remarked that it is possible to make the definition of
cardinality (Definition 1.3.2) more precise. We do this by using
the hypotheses and conclusions of Proposition 1.4.18 and Exer-
cise 1.4.19 as definitions. First, we say that two sets A and B
have equal cardinality and write |A| = |B| if there is a bijective
function f : A → B; this is a reversal of Exercise 1.4.19. If a
set A has equal cardinality to the set {1, 2, . . . , n} (where n is a
positive integer), then we say that A has cardinality (or size) n
and write |A| = n. If there exists some positive integer n with
|A| = n, then we call A finite; otherwise we call A infinite.

Part (1) of Proposition 1.4.18 is sometimes called the Pigeonhole Prin-
ciple, in analogy to the following situation: we have a set P of pigeon-
holes, and a set X of objects. An assignment of objects to pigeonholes
corresponds to a function f : X → P : namely, we set f(x) to the
pigeonhole into which we place the object x. The function f is not
injective if there are two objects x, y ∈ X such that f(x) = f(y); in
other words, if the objects x and y are placed into the same pigeonhole.
The Pigeonhole Principle states that, if |X| > |P |, then no function
with domain X and codomain P is injective: i.e., every assignment of
objects to pigeonholes must end up with at least one pigeonhole con-
taining more than one object.
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Example 1.4.21

Suppose 5 pairs of socks, each pair a different colour, lie in a
drawer. You are not allowed to look into the drawer; how many
socks do you need to pull out to make sure that you have pulled
out at least one same-coloured pair?

Solution.
We apply the Pigeonhole Principle. Let S be the set of socks in the
drawer, and let C be the set of colours (so |S| = 10, and |C| = 5).
For every A ∈ P(S), define a function χA : A → C by f(a) =
the colour of a for a ∈ A. By the Pigeonhole Principle, for all sets
A ∈ P(S) such that |A| > 5, the function χA cannot be injective; so if
we pick out a set A of six socks, the function assigning each sock in A
a colour is not injective and there must be two socks of the same colour.
On the other hand, for every n ≤ 5 there is a possible set A ∈ P(S)
such that χA is injective; so to gurantee getting a pair of socks we must
pull out at least six socks.

We have now seen that existence of surjections and injections is related
to size of sets. This allows us to answer the following natural question:
we know that Z is infinite, but are there ‘larger sets’ than Z? We now
give Cantor’s Theorem, which states that whenever we have a set A
we can always construct a set A′ which is strictly larger than A, in the
sense that there is no surjective function from A to A′. In fact, we can
take the set A′ to be the powerset of A, as in Definition 1.3.22.

Example 1.4.22: Cantor’s Theorem

Let A be a set; show that there is no surjective function f : A→
P(A).

Solution.
Suppose for the sake of contradiction that there is a surjection f : A→
P(A). Then, for all a ∈ A, we have that f(a) ⊆ A. For a given a ∈ A,
there are two possibilities: either a ∈ f(a), or a 6∈ f(a). Define a set
C = {a ∈ A : a 6∈ f(a)}. This is a subset of A; i.e. C ∈ P(A). Since
f is surjective, there exists c ∈ A such that f(c) = C. Now observe
that if c ∈ f(c), then c 6∈ C = f(c) by definition of C; and if c 6∈ f(c),
then c ∈ f(c). This is a contradiction, so the initial assumption that a
surjection existed was false.

Thus we have an infinitely ascending chain of infinite sets, each strictly
larger than the last: Z ⊆ P(Z) ⊆ P(P(Z)) ⊆ · · · !
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1.4.3 Function composition
A function is a rule for producing a specific object when given an object
as input. We now consider the application of two such rules, one after
the other.

Definition 1.4.23

If f : X → Y and g : Y → Z are functions, then the composi-
tion of g and f is the function g ◦ f defined as follows:

g ◦ f : X → Z

(g ◦ f)(x) = g(f(x)).

If the domain of g is not equal to the codomain of f , then g ◦ f is not
defined!

Example 1.4.24

If f : Z→ Z with f(x) = x+ 1 and g : Z→ Z with g(x) = 2x,
then

g ◦ f : Z→ Z
(g ◦ f)(x) = 2x+ 2

while

f ◦ g : Z→ Z
(f ◦ g)(x) = 2x+ 1.

Note that composition of functions is generally not commutative. In
other words, we may not have f ◦ g = g ◦ f , as can be seen in the
example above. On the other hand, we do have the following:

Proposition 1.4.25: Composition is associative

If f : X → Y , g : Y → Z and h : Z → W are functions, then

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Proof. Note that the domain of h ◦ (g ◦ f) is X , while its codomain is
W . Similarly for (h ◦ g) ◦ f . Finally, for x ∈ X , we have

(h ◦ (g ◦ f))(x) = h((g ◦ f)(x))
= h(g(f(x)))
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= (h ◦ g)(f(x))
= ((h ◦ g) ◦ f)(x).

This shows that h ◦ (g ◦ f) = (h ◦ g) ◦ f .

This property is called associativity of composition of functions. It
allows us to omit parentheses and write simply h ◦ g ◦ f . Using induc-
tion (see Section 1.5), one can generalise it to expressions involving an
arbitrary number of functions.

1.4.4 Identity and inverse functions
In some sense, the simplest possible rule for producing an object given
an input object is the rule that says “just give the input back”. While this
is quite a boring rule, it turns out that the associated function (or rather,
class of functions — one for each set) is of significant importance.

Definition 1.4.26

Let X be a set. The identity function idX on X is defined as
follows:

idX : X → X

idX(x) = x.

In other words, idX maps every element of X to itself. Note that each
set has its own identity function! (For example, idN is not equal to idZ,
as they have different domains.)

Proposition 1.4.27

For every function f : X → Y , we have f ◦ idX = f .

Proof. Since the identity idX has X as both its domain and codomain,
the composition f ◦ idX is well defined with domain X and codomain
Y . Hence, f ◦ idX has the same domain and codomain as f . It remains
to show that, for every x ∈ X , the image of x under f ◦ idX is also the
same as the image of x under f . We have

(f ◦ idX)(x) = f(idX(x)) = f(x).

Therefore, it follows from Definition 1.4.4 that f ◦ idX = f .

Exercise 1.4.28

Let f : X → Y be a function. Explain why idX ◦ f = f is not
necessarily true.
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Definition 1.4.29

If f : X → Y is a function, we say that a function g : Y → X is

• a left-inverse of f if g ◦ f = idX ,

• a right-inverse of f if f ◦ g = idY and

• an inverse of f if it is both a left- and right-inverse.

Example 1.4.30

Consider the function

f : N→ N

f(x) = x+ 1

Then the function
g : N→ N

g(0) = 0, g(x) = x− 1 for x ≥ 1

is a left-inverse for f .

It is not necessarily the case that a right-inverse is also a left-inverse, or
vice versa.

Example 1.4.31

Define f : {a, b, c} → {a, b} by f(a) = a, f(b) = b, f(c) = a.
Define the function g : {a, b} → {a, b, c} by g(a) = a, g(b) = b.
Then g is a right-inverse for f . It is not a left-inverse for f .

Example 1.4.32

The function

g : Z→ Z
g(x) = x− 1

is an inverse of the function

f : Z→ Z
f(x) = x+ 1.
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Example 1.4.33

Define a function s : Z → Z by s(n) = n2 for all n ∈ Z. Show
that s has neither a right-inverse nor a left-inverse.

Solution.
Suppose h : Z→ Z is a right-inverse for s; then in particular, s(h(−1)) =
−1. But the square of every integer is positive, so there is no possible
value for h(−1) making this equality true.

Suppose now that k : Z→ Z is a left-inverse for s; then 1 = k(s(1)) =
k(12) = k((−1)2) = k(s(−1)) = −1, which is a contradiction.

Exercise 1.4.34

Show that:

1. The function s : N → N defined by s(n) = n2 for all
n ∈ N has a left-inverse but not a right-inverse.

2. The function f : {1, 2, 3} → {a, b, c, d} defined by f(1) =
a, f(2) = d, f(3) = c has a left-inverse but not a right-
inverse.

3. The function g : Z→ {1} given by g(n) = 1 for all n ∈ Z
has a right-inverse but not a left-inverse.

4. There is an invertible function between the set { 2n | n ∈
Z } of even numbers, and the set { 2n+1 | n ∈ Z } of odd
numbers.

5. Every function with domain {1, 2, 3, 4, 5} and codomain Z
is not invertible.

Proposition 1.4.35

If f is a function with a right-inverse g and a left-inverse h, then
g = h.

Proof. Let f : X → Y , and let g, h : Y → X such that f ◦ g = idY

and h ◦ f = idX . We have g = idX ◦ g = h ◦ f ◦ g = h ◦ idY = h.

It follows from Proposition 1.4.35 that, if a function f has an inverse,
then it is unique. In this case, we say that f is invertible and denote its
inverse by f−1.

Theorem 1.4.36

If f is an invertible function, then so is f−1 and (f−1)−1 = f .



1.4. FUNCTIONS 37

Proof. If f : X → Y is invertible, then f−1 : Y → X exists. We have
f ◦f−1 = idY and f−1 ◦f = idX . But this is also the definition for f−1

having an inverse, with f playing the role of the inverse.

Theorem 1.4.37

Let f : X → Y and g : Y → Z be functions. If f and g are
invertible, then g ◦ f is also invertible and (g ◦ f)−1 = f−1 ◦ g−1.

Proof. Since f and g are both invertible, f−1 : Y → X and g−1 : Z →
Y exist. Hence, the composition f−1 ◦ g−1 : Z → X is well defined.
Using Propositions 1.4.25 and 1.4.27, we have

(g ◦ f) ◦ (f−1 ◦ g−1) = g ◦ f ◦ f−1 ◦ g−1

= g ◦ (f ◦ f−1) ◦ g−1

= g ◦ idY ◦ g−1

= g ◦ g−1 = idZ

Using similar arguments, we also have (f−1 ◦ g−1) ◦ (g ◦ f). Hence
g ◦ f is invertible and its inverse is, indeed, (g ◦ f)−1 = f−1 ◦ g−1.

Theorem 1.4.38

Let X be a non-empty set. A function f : X → Y is

1. injective if and only if it has a left-inverse;

2. surjective if and only if it has a right-inverse;

3. bijective if and only if it has an inverse.

Proof. 1. Suppose f is injective. Let x0 ∈ X . We define g : Y →
X by the following rule: if there is x ∈ X such that f(x) = y,
then there is a unique one, and we define g(y) = x. If there is no
so such x, then we define g(y) = x0. Now, for x ∈ X , we have
g(f(x)) = x, so g is a left-inverse.

Conversely, if f has a left-inverse g and f(x) = f(y), then x =
g(f(x)) = g(f(y)) = y, which proves that f is injective.

2. Suppose f is surjective. We define g : Y → X in the following
way: for every y ∈ Y , there exists x ∈ X such that f(x) = y.
We pick one of these x, and declare g(y) = x. (This actually uses
the axiom of choice, but this is outside the scope of this course.)
One then has f(g(y)) = f(x) = y, so g is a right-inverse for f .

Conversely suppose g is a right-inverse for f . Then, for y ∈ Y ,
we have that f(g(y)) = y so f is surjective.
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3. Follows immediately from (a) and (b).

Exercise 1.4.39

Let 1
3
Z denote the set {n/3 | n ∈ Z }. Construct functions

f, g, h : Z → 1
3
Z such that f has a left-inverse but no right-

inverse, g has a right-inverse but no left-inverse, and h is invert-
ible.

Example 1.4.40

Let A be a finite set, with |A| = n. Show that P(A) is finite, and
that |P(A)| = 2n.

Solution.
We will show that there is a bijection between the set P(A), and the set
X of binary sequences of length n (i.e. the set of objects of the form
(β1, . . . , βn) where each βi ∈ {0, 1}). Suppose that A = {a1, . . . , an},
where the ai are all distinct. If S ∈ P(A), define f(S) to be the binary
sequence with a 1 in the ith position if ai ∈ S, and with a 0 in the ith
position if ai 6∈ S. This defines a function f : P(A)→ X . Conversely,
define a function g : X → P(A) as follows: if (β1, . . . , βn) ∈ X is
a binary sequence, then define g((β1, . . . , βn)) to be the subset of A
which contains ai if and only if βi = 1. It is easy to see that f ◦g = idX

and that g ◦ f = idP(A), so f is a bijection from X to P(A). Now
note that there are 2n possible binary sequences of length n and use the
result of Exercise 1.4.19.

Exercise 1.4.41

Let A and B be finite sets, with |A| = m and |B| = n. Let
F (A,B) be the set of functions with domain A and codomain B.
Show that F (A,B) is finite, and that |F (A,B)| = nm.

1.5 Mathematical induction

The set N of natural numbers has the following very important property:

Axiom 1.5.1: Well-Ordering Principle

Every nonempty subset of N contains a smallest member.
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Example 1.5.2

• The smallest member of {3, 7, 8} is 3.

• The smallest member of N is 0.

Note that many other familiar sets do not have this property.

Example 1.5.3

• Z does not have a smallest member.

• The set {x ∈ R | x > 0} of strictly positive real numbers
does not have a smallest member.

The Well-Ordering Principle is one of the defining properties of the
natural numbers. We will not prove the Well-Ordering Principle. In
fact, we will take it as an axiom, which means that we assume it to
be true, and use it as a starting point to prove other results. The most
important of these result is mathematical induction, which can be used
to prove that some proposition P (n) is true for all natural numbers n.

Theorem 1.5.4: Principle of Mathematical Induction (PMI)

Let P (n) be a sequence of statements with n ∈ N. If

• P (0) is true, and

• for every k ∈ N, if P (k) is true, then P (k + 1) is true,

then P (n) is true for all n ∈ N.

Proof. We prove the theorem using the method of proof by contradic-
tion, that is, we assume that the conclusion is false, that is there exists
at least one m ∈ N for which P (m) is false, and derive a contradiction.
Let

S := {m ∈ N : P (m) is false} ⊆ N.

As discussed earlier, we assume that S 6= ∅. By the Well-Ordering
Principle, S has a smallest element, say s. Since we are given that P (0)
is true, we must have s ≥ 1. Therefore, s − 1 ∈ N, but s − 1 /∈
S, because s is the smallest element of S. Hence, P (s − 1) is true,
which implies that P (s − 1 + 1) = P (s) is true, so s /∈ S, which is a
contradiction.

The Principle of Mathematical Induction yields a very powerful method
of proof. In a proof by induction, P (0) is called the base case, while the
fact that, for every k ∈ N, P (k) =⇒ P (k + 1), is called the inductive
step. The hypothesis of this implication, namely P (k), is called the
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inductive hypothesis. To prove a sequence of statements for all natural
numbers, it thus suffices to prove the base case and the inductive step.

Example 1.5.5

Prove that, for all n ∈ N, we have

2n ≥ n+ 1.

Solution.
We will use a proof by induction. For n ∈ N, let P (n) be the statement
“2n ≥ n+ 1”.

Base case:
The statement P (0) is “20 ≥ 0 + 1” and it is true.

Inductive step:
Let k ∈ N and suppose that the statement P (k) is true, that is,
“2k ≥ k+1” is true. Given this inductive hypothesis, we want to
show that P (k + 1) is true. In other words, we want to show that

2k+1 ≥ ((k + 1) + 1) = k + 2.

Now 2k+1 = 2 · 2k, and by the inductive hypothesis, we have

2k+1 = 2 · 2k ≥ k + 2 ⇐⇒ 2 (k + 1) ≥ k + 2

Hence, we require 2 k + 2 ≥ k + 2, which simplifies to k ≥ 0.
Since k ∈ N, this is satisfied.

Hence, by the Principle of Mathematical Induction, P (n) is true for all
n ∈ N.

Exercise 1.5.6

Using induction, prove that for all n ∈ N, we have

n∑
i=0

i := 0 + 1 + 2 + · · ·+ n =
n(n+ 1)

2
.
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Exercise 1.5.7

Given the following sums, find a simple formula for each (in the
style of Exercise 1.5.6 above) and prove that it is correct using
induction.

1.
n∑

i=0

(2i+ 1) = 0 + 1 + 3 + 5 + · · ·+ 2n+ 1

2.
n∑

i=1

(4i− 1) = 3 + 7 + 11 + · · ·+ 4n− 1

Sometimes, instead of proving that the sequence of statements P (n)
hold for every n ∈ N, we want to prove they hold for every n ∈ N with
n ≥ s. We can still use the Principle of Mathematical Induction in this
case, with two modification:

• The base case that we must prove is P (s), rather than P (0);

• In the inductive step, we may use the fact that k ≥ s.

Example 1.5.8

For all n ∈ N with n ≥ 3, the sum of the interior angles of an
n-gon is equal to (n− 2)π.

Proof. We prove this by induction on n. For n ∈ N with n ≥ 3, let
P (n) be the statement that “the sum of the interior angles of an n-gon
is equal to (n− 2)π”.

Base case.
(See Figure 1.3a.) The statement P (3) is that “the sum of the
interior angles of a 3-gon (triangle) is equal to π”. Call the sides
of the triangle A, B and C and the angles opposite them α, β and
γ. Consider the unique line parallel to the line containing B, and
containing the vertex not on B. Using corresponding angles, we
see that α + β + γ = π.

Inductive step.
(See Figure 1.3b.) Let k ∈ N with k ≥ 3, and suppose that P (k)
is true, that is, “the sum of the interior angles of a k-gon is equal
to (k− 2)π”. We want to show that P (k+ 1) is true, that is, “the
sum of the interior angles of a (k + 1)-gon is equal to (k − 1)π”.
Consider a (k + 1)-gon, with vertices labelled (1, . . . , k + 1),
in order. Add an extra edge between k − 1 and k + 1. This
subdivides the (k + 1)-gon into a k-gon and a triangle, so the
sum of its interior angles is (k − 2)π + π = (k − 1)π.
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(a) Base case.
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(b) Inductive step.

Figure 1.3: Illustrations for Example 1.5.8.

Therefore, by the Principle of Mathematical Induction, we conclude
that P (n) is true for all n ∈ N with n ≥ 3.

Another variant occurs when we want to prove P (n) for every natural
number n greater than s, but are only able to prove the inductive step for
k ≥ t, where t > s. In this situation, we can try to start with the base
case P (t) and then prove P (s), P (s+ 1), . . . , P (t− 1) case-by-case.

Exercise 1.5.9

Using induction, prove that for all n ∈ N, we have

3n > n2.

Note that in the proof of Example 1.5.8, in the inductive step, we not
only assumed that P (k) is true, but also used that P (3) is true. Techni-
cally, the inductive hypothesis is only P (k), but assuming P (3) is fine
since we already proved it. This idea can be pushed further and leads
to a stronger variant of the Principle of Mathematical Induction, often
called complete induction or strong induction.

Theorem 1.5.10: Principle of Strong Induction

Let P (n) be a sequence of statements with n ∈ N. If

• P (0) is true, and

• for every k ∈ N, if P (j) is true for every j ∈ {0, . . . , k},
then P (k + 1) is true,

then P (n) is true for all n ∈ N.

Proof. The proof is essentially the same as the proof of Theorem 1.5.4,
using the Well-Ordering Principle.
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Strong induction (Theorem 1.5.10) is a stronger variant of usual induc-
tion because the inductive hypothesis is stronger: to prove that P (k+1)
is true, we not only get to assume that P (k) is true, but that P (j) is true
for all 0 ≤ j ≤ k. This is useful for many problems.
Note that, just as with usual induction, we can adapt strong induction
to situations with bases cases larger than 0.

Example 1.5.11

Consider a chocolate bar made up of n ≥ 1 squares arranged in
a rectangular grid. Prove that, to break the bar into its n squares
requires n− 1 breaks.

Solution.
Let P (n) be the statement: “Breaking a bar made up of n squares re-
quires n − 1 breaks”. Using strong induction, we prove that P (n) is
true for every n ∈ N with n ≥ 1.

Base case.
The base case P (1) is “breaking a bar made up of 1 square re-
quires 0 breaks”, which is clearly true.

Inductive step.
For the inductive step, let k ≥ 1 and assume that P (j) is true for
every j ∈ {1, . . . , k}. We want to show that P (k+1) is true, that
is “breaking a bar made up of k + 1 square requires k breaks”.

So, consider a chocolate bar made up of k+1 squares. After one
break, we we will have two pieces, one made up of x squares, the
other made up of k + 1 − x squares. Note that x, k + 1 − x ∈
{1, . . . , k} so, by the inductive hypothesis, breaking the piece
made up of x squares requires x − 1 breaks, while breaking the
piece made up of k+1−x squares requires k+1−x−1 breaks.
Thus, breaking a bar with k + 1 squares requires 1 + (x − 1) +
(k + 1− x− 1) = k breaks.

Therefore, by the Principle of Mathematical Induction, we conclude
that P (n) is true for all n ∈ N with n ≥ 1.

1.6 Larger systems of numbers

1.6.1 Rational numbers
You may recall from your early childhood that distributing 10 lollies
amongst 3 people leads to problems. A more formal way of saying this
is that the equation 3x = 10 has no solution with x ∈ Z. So the need
for a larger number system naturally arises.
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Definition 1.6.1

A rational number is a pair of integers a/b with b 6= 0. Two
such pairs a/b and c/d represent the same rational number if
ad = bc. The set of rational numbers is denoted Q.

Note that, for every x ∈ Q with x 6= 0 there is a unique pair of integers
a, b ∈ Z such that gcd(a, b) = 1, a > 0 and x = a/b.

Exercise 1.6.2

Show that Z ⊆ Q, but Q 6⊆ Z.

We can extend the operations + and · from the integers to the rational
numbers in a natural way, and they have similar properties. In fact, we
obtain a new property: every non-zero element x in Q has a multiplica-
tive inverse (in other words, there exists y ∈ Q such that xy = 1). This
is the property that allows us to solve linear equations like 3x = 10 over
Q, and it means that Q is an algebraic object called a field.
The extension from Z to Q is not sufficient to solve every equation.

Example 1.6.3

There is no rational number r such that r2 = 2.

Solution.
Suppose, for a contradiction, that there exists r ∈ Q such that r2 = 2.
Clearly, r 6= 0, so there exist a, b ∈ Z such that gcd(a, b) = 1 and r =
a/b. It follows that (a/b)2 = 2 and a little algebra gives a2 = 2b2, so a2

is even. By Example 1.2.14, a is even. Thus a = 2n for some n ∈ Z;
substituting, (2n)2 = 2b2 and thus 2n2 = b2. Again by Example 1.2.14,
b is even and so 2 is a common divisor of a and b; i.e., gcd(a, b) ≥ 2,
which contradicts the assumption that gcd(a, b) = 1. This completes
the proof.

Example 1.6.4

log2(3) is not a rational number.

Solution.
Suppose, for a contradiction that log2(3) is a rational number, so that
log2(3) = m/n for some m ∈ Z and n ∈ Z\{0}. Since log2(3) > 0, we
can assume that m,n > 0. By definition of logarithms, we have 2m/n =
3 and, using laws of exponents, 2m = 3n. But 2m is an even integer
(since m > 0) whereas 3n is an odd integer—we have a contradiction!
This concludes the proof.
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1.6.2 Real numbers

Recall from Example 1.6.3 that there does not exist a rational number
r such that r2 = 2. So the need for a large number system arises again,
which we will call the real numbers. A precise definition of the real
numbers is quite elaborate and outside of the scope of this course.

Remark 1.6.5

For the interested reader, let us briefly mention that an algebraic
way to define the real numbers is via the use of Dedekind cuts.
The basic idea is to partition the rational numbers into those
smaller than the number one wants to represent and those big-
ger; for example, for

√
2 the sets A and B forming the partition

would be A = {a ∈ Q| either a < 0 or a ≥ 0 and a2 < 2} and
B = {b ∈ Q|b > 0 and b2 > 2}. The set of real numbers is then
defined to be the set of these cuts; the details of the definition of
the algebraic operations and the order are very technical and will
be discussed in a course on analysis or set theory.

1.6.3 Complex numbers

It is clear that the equation x2 + 1 = 0 cannot have a solution in the
real numbers since the square of every real number is nonnegative. This
motivates the definition of the imaginary unit i, which has the property
that i2 = −1, and thus is a solution to this equation.

Remark 1.6.6

Following the standard ISO 80000-2:2009, we will use the Ro-
man i for the imaginary unit. This allows us to use an italic i to
represent some other variable—often a row index in a matrix or
column vector in the later part of this course.

Definition 1.6.7: The complex numbers

The set of complex numbers, denoted C, is the set of all formal
expressions of the form a+ bi, with a, b ∈ R.
We can add complex numbers in the obvious way: for a, b, c, d ∈
R, we have (a+ bi) + (c+ di) = (a+ c) + (b+ d)i.
We can also multiply complex numbers by using distributivity
and the definition i2 = −1:

(a+ bi)(c+ di) = (ac+ adi + bci + bdi2)

= (ac− bd) + (ad+ bc)i.
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Figure 1.4: An Argand diagram.

Proposition 1.6.8: Properties of complex multiplication

Let x, y, z ∈ C.

1. 1z = z1 = z; (Identity)

2. xy = yx; (Commutativity)

3. x(yz) = (xy)z; (Associativity)

Proof. Exercise.

Definition 1.6.9

Let z, w ∈ C be of the form z = a + bi and w = c + di with
a, b, c, d ∈ R. We say that z = w, that is, z and w are equal if
and only if a = c and b = d.

Definition 1.6.10: Cartesian representation

A complex number z = a + bi with a, b ∈ R can be identified
with the ordered pair (a, b) of real numbers, i.e. a point in the
plane R2. We call (a, b) the Cartesian representation of z.

Because of this identification, the set of complex numbers is
sometimes called the complex plane, with each complex number
being a point of the plane. A plot showing complex numbers as
points in this way is called an Argand diagram, and an example
is Figure 1.4.

Remark 1.6.11

Two complex number z, w ∈ C are equal if their Cartesian repre-
sentations correspond to the same point in the Argand diagram.
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Definition 1.6.12: Polar Coordinates

Let p be a point in the plane R2. We can use Cartesian coor-
dinates to specify p, but we can also specify it by giving the
distance r to the origin, together with the angle θ between the
x-axis, and the line through the origin and p. In this case, (r, θ)
are the polar coordinates for p.

Remark 1.6.13: About the angle

• Note that the angle θ is not unique for a given point, since
adding 2π to θ leaves the point unchanged. We will use the
convention that an angle is always in the interval [0, 2π).

• The origin (0, 0) does not have a well-defined θ. It is the
unique point with r = 0 and in polar notation we will
denote it 0.

Given the coordinates of a point in one representation, how do we de-
termine its coordinates in the other representation?

Lemma 1.6.14: Changing coordinates

Given a point with Cartesian coordinates (a, b), its polar coordi-
nates are given by

r =
√
a2 + b2

and
tan θ =

b

a
, with θ ∈ [0, 2π).

Conversely, given a point with polar coordinates (r, θ), its Carte-
sian coordinates are given by

a = r cos θ

and
b = r sin θ.

Proof. Pythagoras’ formula tells us that r2 = a2 + b2. Moreover,

cos θ =
a√

a2 + b2
and sin θ =

b√
a2 + b2

, So we obtain r =
√
a2 + b2

and tan θ =
b

a
.

The second part follows from basic trigonometry.
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Definition 1.6.15: Polar Representation

We have already seen that a complex number z can be identified
with a point of the Cartesian plane R2. We can then use the
above to express z in polar coordinates. In this setting, we call θ
the argument and r the modulus of z; we denote r sometimes
by |z|. The argument and modulus are indicated on Figure 1.4.

Definition 1.6.16: Complex conjugate

The complex conjugate of a complex number z = a + bi, with
a, b ∈ R, is given by the complex number a− bi, and denoted z̄.

In the Cartesian representation, the complex conjugate of (a, b) is the
point (a,−b), which is geometrically obtained from (a, b) by a reflec-
tion with respect to the x-axis.

Exercise 1.6.17

Let z ∈ C correspond to the point (a, b) in the Argand diagram.

1. Express the point that is geometrically obtained from (a, b)
by a reflection with respect to the y-axis in terms of z
and/or z̄.

2. Express in terms of z and/or z̄ the point that is geometri-
cally obtained from (a, b) by a reflection with respect to
first the x- and then the y-axis.

Lemma 1.6.18: Inverse of a complex number

For every z ∈ C, z 6= 0 there exists a unique complex number,
denoted by z−1, with the property that zz−1 = z−1z = 1. We
call z−1 the inverse of z and it can be computed as z−1 = 1

|z|2 z̄.

Proof. It can readily be verified that z−1 has the desired property. To
prove uniqueness assume that z had two inverses, say, u and w with the
above property. Then u = u1 = u(zw) = (uz)w′ = 1w = w so u = w
and the inverse of z is unique.

Recall that given two complex numbers in Cartesian form, adding them
was straightforward, whereas multiplying them was a little more com-
plicated. We will see that, in polar coordinates, the reverse is true:
multiplication is easy, while addition is more difficult.
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Proposition 1.6.19: Multiplying using polar coordinates

If z1 and z2 are complex numbers given in polar coordinates by
(r1, θ1) and (r2, θ2), then z1z2 is given by the polar coordinates

(r1r2, θ1 + θ2).

Proof. Switching to Cartesian coordinates, we get

z1 = (r1 cos θ1, r1 sin θ1)

and
z2 = (r2 cos θ2, r2 sin θ2).

Applying the formula for multiplication in complex coordinates, we
find

z1z2 = (r1 cos θ1 + r1 sin θ1i) · (r2 cos θ2 + r2 sin θ2i)

= (r1r2 cos θ1 cos θ2 − r1r2 sin θ1 sin θ2)+

(r1r2 cos θ1 sin θ2 + r1r2 sin θ1 cos θ2)i

= r1r2 cos(θ1 + θ2) + r1r2 sin(θ1 + θ2)i.

Switching back to polar coordinates, we get (r1r2, θ1 + θ2), as claimed.

Example 1.6.20: On the sum of angles

In polar coordinates, if we multiply (2, 5π/3) with (3, 4π/3),
then applying the formulas we obtain (6, 3π); recall though our
convention that an angle is always in the interval [0, 2π), and so
subtracting 2π we obtain the result (6, π).

Exercise 1.6.21: Properties of the modulus

Let w and z be complex numbers. Show that |wz| = |w||z|, and
that |z|2 = zz̄.

From now on, we will write reiθ for the complex number with polar
coordinates (r, θ). This makes sense, because we can apply the familiar
rules for exponentiation to multiply numbers in polar form:

(r1e
iθ1)(r2e

iθ2) = r1r2e
i(θ1+θ2).

Remark 1.6.22

This notation can be shown to have a deeper meaning which you
will see (for example) in a course on Complex Analysis.
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The polar form also makes it easier to compute powers of complex
numbers.

Lemma 1.6.23: De Moivre’s formula

If reiθ ∈ C and n ∈ Z, then(
reiθ
)n

= rneinθ.

Proof. When n = 0, both left- and right-hand sides become 1, so the
formula is trivial. For n > 0, this formula can be proved by induction
using Proposition 1.6.19. Note that(

r−ne−inθ
) (

reiθ
)n

=
(
r−ne−inθ

) (
rneinθ

)
= rn−nei(n−n)θ = 1,

so
(
reiθ
)−n

=
((
reiθ
)n)−1

=
(
r−ne−inθ

)
. Hence, if n < 0 then the

formula holds as well.

Exercise 1.6.24

• What is the complex conjugate of reiθ?

• If r 6= 0, what is the inverse of reiθ?

• Find all x, y ∈ R such that (x+ iy)2 = i.

• Let v := 1 + i. Show that the set of all points z ∈ C
such that |z − v| = |vz| is a circle in the complex plane,
and find its centre and radius. Further show that the set
of all points z ∈ C such that |z − v| = |z + v| is a line
in the complex plane. What are the points of intersection
between the circle and the line?

We will encounter the complex numbers in a few more places in this
course in connection to the other topics we discuss.



Linear algebra

Linear algebra is the branch of mathematics concerning linear equations
and functions. It is used in almost all areas of mathematics, science and
engineering.

2.1 Systems of linear equations

2.1.1 Basic definitions

Definition 2.1.1

A linear equation in n variables x1, x2, . . . , xn with coeffi-
cients a1, . . . , an, d ∈ R is an equation of the form

a1x1 + · · ·+ anxn = d.

A solution (in Rn) to the equation is an n-tuple (s1, s2, . . . , sn) ∈
Rn such that when we substitute these numbers for the respective
variables the equation holds:

a1s1 + · · ·+ ansn = d.

The solution set (in Rn) to the equation is the set of all solutions
to the equation:

{(s1, . . . , sn) ∈ Rn | a1s1 + · · ·+ ansn = d} .

We often call an equation linear if it can be re-written in the form above.
For example, y = x+ 1 can be re-written as −x+ y = 1.

51
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Example 2.1.2

• 2x + 3y + z = 1 is a linear equation in the variables x, y
and z. You can check that (x, y, z) = (0, 0, 1) is a solution
to this equation, but (x, y, z) = (1, 1, 1) is not.

• 2x y− 3 = 0 is not a linear equation in the variables x and
y because the variables are multiplied together.

• x − 17 = 0 is a linear equation; its unique solution is
x = 17.

• z + (1 + 2i)w = i is a linear equation with complex coef-
ficients. Its solution set (in C2) is{

(z, w) ∈ C2 | z = −i− (1 + 2i)w
}
.

Remark 2.1.3

The example y = x+1 above suggests that the equation is effec-
tively a function that relates x ∈ R to y := y(x) ∈ R. The graph
of the function y : R → R is a straight line, which is another
way to understand why we call such equations linear equations.

In the general case of a single equation with (unknown) variables
x1, . . . , xn, if there exists 1 ≤ k ≤ n such that ak 6= 0 we can
rewrite the equation as

xk =
1
ak

(d− a1x1 − · · · ak−1xk−1 − · · · ak+1xk+1 · · · − anxn) .

The graph of the function xk : Rn−1 → R is a hyperplane, which
is much harder to draw!

We conclude from Remark 2.1.3 that a linear equation often has in-
finitely many solutions. We need an efficient way to find and express
the set of all solutions.

Example 2.1.4

Find all solutions to the linear equation 2x+ 3y + z = 1.

Solution.
We can rearrange the equation to get:

(i) x = 1
2
(1− 3y − z) with y, z ∈ R, or

(ii) y = 1
3
(1− 2x− z) with x, z ∈ R, or

(iii) z = 1− 2x− 3y with x, y ∈ R.
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Each of these equations provides a complete solution. We can assign
any values to y and z in (i) or x and z in (ii) or x and y in (iii):{

(x, y, z) ∈ R3
∣∣ 2x+ 3y + z = 1

}
=

{
(x, y, z) ∈ R3

∣∣ x = 1
2
(1− 3y − z)

}
=

{
(x, y, z) ∈ R3

∣∣ y = 1
3
(1− 2x− z)

}
=

{
(x, y, z) ∈ R3

∣∣ z = 1− 2x− 3y
}
.

In the last three expressions two of the three parameters are freely cho-
sen and determine the third one. Hence the solution set can still be
viewed as the graph of a function, say, z : R2 → R, but the input to
this function is now a point in R2, because both x and y are used for the
function rule. The graph of such a function will be a plane in (x, y, z)-
space. It again does not matter whether you express z as a function of
x and y, or y as a function of x and z, and so on; the graph will always
be the same plane.

Definition 2.1.5

A system of linear equations is a collection of linear equations
on the same set of variables. A solution to a system of linear
equations is an assignment of values to all the variables that si-
multaneously solves all the equations in the system.

Example 2.1.6

This is a system of three linear equations in x1, x2, x3 and x4:
2x1 − x2 + x3 + 2x4 = 1

6x1 − 2x2 + x3 + 6x4 = 4

2x1 − x3 + 3x4 = 4

Example 2.1.7

Find all solutions to the following systems of linear equations:

(i)
{
2x+ 3y = 1

2x+ 3y = 2

(ii)
{
2x+ y = 1

x+ y = 1

(iii)
{
2x+ y = 1

4x+ 2y = 2
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Solution. (i) Note that 2x + 3y = 1 6= 2 = 2x + 3y, so the two
equations cannot simultaneously be satisfied and this system of
two equations and two unknowns has no solution.

(ii) Observe that 2x + y = x + (x + y). Hence, if x + y = 1 then
2x + y = 1 ⇔ x + 1 = 1 and we must have x = 0. This implies
y = 1, so this system of two equations has a unique solution.

(iii) Let

S =
{
(x, y) ∈ R2

∣∣ 2x+ y = 1 and 4x+ 2y = 2
}
.

Note that all coefficients in the second equation are the double of
the corresponding ones in the first equation, so that

S =
{
(x, y) ∈ R2

∣∣ 2x+ y = 1
}

=
{
(x, y) ∈ R2

∣∣ y = 1− 2x
}

=
{
(x, 1− 2x)

∣∣ x ∈ R
}
,

So this system of two equations has infinitely many solutions that
lie on a straight line in R2.

2.1.2 Echelon form
Definition 2.1.8

After arranging a system of linear equations in rows as above,
the first nonzero coefficient in each row is called the pivot. A
system of linear equations is in row echelon form if each pivot
is successively further to the right as we move downwards. In this
case, variables corresponding to columns with a pivot are called
leading variables. Other variables are called free variables.

When a system is in row echelon form, we can solve the system one
equation at a time. We start at the bottom and progressively work our
way upwards, expressing the leading variables in terms of free vari-
ables. The free variables can take on value. This process is known as
back substitution.

Example 2.1.9

Solve the following (real) system of linear equations:
u+ 2v + w − x + z = 3

v − x+ y = 0

x + 3z = 3

y + 2z = 4
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Solution.
This system is in row echelon form; u, v, x and y are the leading vari-
ables while w and z are the free variables. We start with the bottom
equation and obtain y = 4 − 2z. Then from the equation above this,
we obtain x = 3 − 3z. By continuing upwards we further obtain
v = x − y = (3 − 3z) − (4 − 2z) = −1 − z. Finally from the top
equation we can deduce that:

u = 3− 2v − w + x− z

= 3− 2(−1− z)− w + (3− 3z)− z

= 8− w − 2z.

Therefore, (u, v, w, x, y, z) ∈ R6 is a solution if and only if it is an ele-
ment of the following set:(u, v, w, x, y, z) ∈ R6

∣∣∣∣∣∣∣∣
u = 8− w − 2z,
v = −1− z,
x = 3− 3z,
y = 4− 2z and w, z ∈ R


= { (8− w − 2z,−1− z, w, 3− 3z, 4− 2z, z) | w, z ∈ R }

=


(8,−1, 0, 3, 4, 0)

+ (−w, 0, w, 0, 0, 0)
+ (−2z,−z, 0,−3z,−2z, z)

∣∣∣∣∣∣ w, z ∈ R


=


(8,−1, 0, 3, 4, 0)

+ w (−1, 0, 1, 0, 0, 0)
+ z(−2,−1, 0,−3,−2, 1)

∣∣∣∣∣∣ w, z ∈ R

 .

Example 2.1.10

For the following systems of (real) linear equations in row eche-
lon form,

(a) identify the leading variables;

(b) identify the free variables;

(c) find the general solution.

(i)
{
3x+ 2y = 1

y = −1

(ii)
{
w − x− y − z = 0

y + 2z = 0

Solution.
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(i) (a) x and y;

(b) none;

(c) x = 1 and y = −1.

(ii) (a) w and y;

(b) x and z;

(c) y = −2z and w = x − z, where x, z ∈ R. Therefore, the
general solution for (x, y, z, w) ∈ R4 is the set

{ (x, −2z, z, x− z) | x, z ∈ R }

= {x (1, 0, 0, 1) + z (0,−2, 1,−1) | x, z ∈ R } .

2.1.3 Gaussian elimination
We now know how to solve systems of linear equations that are in row
echelon form. What is now required is a technique for transforming an
arbitrary system of linear equations into row echelon form. What we
want are operations on systems of linear equations that leave the set of
solutions unchanged. Some examples of such operations are:

1. interchanging two equations;
2. replacing an equation by a non-zero multiple of itself;
3. adding a multiple of an equation to another equation.

These operations are called elementary row operations. Using them,
we can transform every system of linear equations into row echelon
form.

Example 2.1.11

Solve the following systems of linear equations, by first putting
them in row echelon form using row operations:

(i)
{

x+ 2y = 3

2x+ 5y = 7

(ii)


y + z = 1

x+ y + z = 1

2x+ 2y + 3z = 1

Solution.

(i)
{

x+ 2y = 3

2x+ 5y = 7
⇐⇒

{
x+ 2y = 3

y = 1 R2 ← R2 − 2R1
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Using back substitution, we find that there is a unique solution,
which is (x, y) = (1, 1).

Note that the row echelon form is not unique. Any multiple of
either of the equations is also in row echelon form, such as{

2x+ 4y = 6 R1 ← 2R1

− y = −1 R2 ← −R2

or we can swap the two equations and use the pivot 2 in the second
equation instead:{

2x+ 5y = 7

x+ 2y = 3
⇐⇒

{
2x+ 5y = 7

− 1
2
y = −1

2
R2 ← R2 − 1

2
R1

which leads to the same solution.

(ii) 
y + z = 1

x+ y + z = 1

2x+ 2y + 3z = 1

⇐⇒


x+ y + z = 1 R1 ← R2

y + z = 1 R2 ← R1

2x+ 2y + 3z = 1

⇐⇒


x+ y + z = 1

y + z = 1

z = −1 R3 ← R3 − 2R1

Using back substitution, we conclude that (x, y, z) = (0, 2,−1) is
the unique solution.

The general process, known as Gaussian Elimination, goes as follows.

Algorithm 2.1.12: Gaussian Elimination Algorithm

In order to solve a system of linear equations given in row form
like the examples above:

1. Ensure that there is a pivot in the top-left position, inter-
changing rows if necessary.

2. Eliminate the first variable from all the subsequent equa-
tions by adding a suitable multiple of the first row.

3. Consider the system consisting of all but the first equation;
go back to Step 1 and repeat the process on the new system.
Repeat until the last equation is reached.

The system is now in a row echelon form and can directly be
solved via back substitution.
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Remark 2.1.13

The process of Gaussian elimination is not unique; in particular,
there is often a choice in selecting a pivot in the top-left position.
Humans prefer choosing a pivot that is a divisor for all (or most
of the) other coefficients in its column; this makes the arithmetic
operations easier. Computer codes for solving linear equations
will choose the (first) largest coefficient (in absolute value) as the
pivot, because this ensures a smallest possible round-off error in
subsequent arithmetic operations; you can learn more about this
in a course on numerical computation.

Example 2.1.14

By using Gaussian Elimination and back substitution, solve the
system of equations

w + 2x+ 4y + 2z = 3

w + y + 2z = −1
2w − 2x− 2y + 2z = −6.

Solution.

1. We do not need to exchange any rows, as the top left position
contains a pivot.

2. We eliminate the pivots from the second and third equations by
adding multiples of R1:

w + 2x+ 4y + 2z = 3

− 2x− 3y = −4 R2 ← R2 −R1

− 6x− 10y − 2z = −12 R3 ← R3 − 2R1.

3. We now remove the first equation, and consider the new system:{
−2x− 3y = −4
−6x− 10y − 2z = −12.

4. There is a pivot in the top left position, so we use it to eliminate
the x in the second equation:{

−2x− 3y = −4
− y − 2z = 0 R2 ← R2 − 3R1.
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5. Removing the first equation again leaves us with a single equa-
tion; thus we are done. Adding back in the removed equations
we have the system in row echelon form (with free variable z):


w + 2x+ 4y + 2z = 3

− 2x− 3y = −4
− y − 2z = 0.

Now, by back substitution we have that the solutions (w, x, y, z) ∈ R4

are given by the set

{ (−1, 2 + 3z, −2z, z) | z ∈ R }
= { (−1, 2, 0, 0) + z (0, 3,−2, 1) | z ∈ R } .

2.1.4 Matrix notation

While doing Gaussian Elimination, it is not necessary to write which
variable corresponds to which coefficient, as this is indicated by the
position. This allows us to lighten our notation. For example,


3x+ 4y + 5z = 2

x+ 2y + 3z = 4

2x+ 5y + z = 3

can be rewritten as

3 4 5 2
1 2 3 4
2 5 1 3



as long as we remember that the first column corresponds to the variable
x, the second column to y, the third to z and the last to the constant
coefficients. This is called the augmented matrix corresponding to the
the system of linear equations.
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Example 2.1.15

For each of the following systems of linear equations:

(a) write the system in augmented matrix form;
(b) reduce the matrix to row echelon form;
(c) find the general solution.

(i)

2x+ 4y + 2z = 6

y + z = 1

x+ 3y + 3z = 5

(ii)


x+ y + z = 1

2x− y + 3z = 2

4x+ y + 5z = 5

(iii)


x+ y + z = 1

2x+ 2y + 2z = 2

3x+ 3y + 3z = 3

Solution.
(i) (a) The augmented matrix is2 4 2 6

0 1 1 1
1 3 3 5


(b) One such reduction is done as follows:2 4 2 6

0 1 1 1
1 3 3 5

 ⇐⇒

1 2 1 3
0 1 1 1
1 3 3 5

R1 ← 1
2
R1

⇐⇒

1 2 1 3
0 1 1 1
0 1 2 2


R3 ← R3 −R1

⇐⇒

1 2 1 3
0 1 1 1
0 0 1 1


R3 ← R3 −R2

Echelon form

(c) From the answer to part (b), we see that:
x+ 2y + z = 3

y + z = 1

z = 1
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and so the unique solution is (x, y, z) = (2, 0, 1).

(ii) (a) The augmented matrix is1 1 1 1
2 −1 3 2
4 1 5 5


(b) Reduction to row echelon form could be:1 1 1 1

2 −1 3 2
4 1 5 5

 ⇐⇒

1 1 1 1
0 −3 1 0
4 1 5 5

R2 ← R2 − 2R1

⇐⇒

1 1 1 1
0 −3 1 0
0 −3 1 1


R3 ← R3 − 4R1

⇐⇒

1 1 1 1
0 −3 1 0
0 0 0 1


R3 ← R3 −R2

Echelon form

(c) From part (b) we have:
x+ y + z = 1

− 3y + z = 0

0 = 1

hence, there are no solutions.

(iii) (a) The augmented matrix is1 1 1 1
2 2 2 2
3 3 3 3


(b) Reduction to row echelon form gives:1 1 1 1

2 2 2 2
3 3 3 3

 ⇐⇒

1 1 1 1
0 0 0 0
3 3 3 3

R2 ← R2 − 2R1

⇐⇒

1 1 1 1
0 0 0 0
0 0 0 0


R3 ← R3 − 3R1

Echelon form
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(c) From part (b) we have:
x+ y + z = 1

0 = 0

0 = 0

and so the set of solutions is{
(1, 0, 0) + y (−1, 1, 0) + z (−1, 0, 1)

∣∣ (y, z) ∈ R2
}
.

Exercise 2.1.16

Find the solution set in C3 of the following linear system:

z1 + (1− i)z3 = 0

(1 + i)z1 + z2 = 1

(2− 2i)z2 − 4z3 = 2.

2.1.5 Reduced row echelon form
Definition 2.1.17

A system of linear equations is in reduced row echelon form if

1. it is in row echelon form;
2. all the pivots are equal to one;
3. the pivots are the only non-zero entries in their columns.

Example 2.1.18

The following system is in reduced row echelon form:
w + 3y = 2

x+ 2y = 1

z = 3

or in matrix form, 1 0 3 0 2
0 1 2 0 1
0 0 0 1 3


To reduce a system of linear equations into reduced row echelon form,
we use the following procedure.
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Algorithm 2.1.19

1. Reduce the system to row echelon form;
2. Divide each equation by its pivot, so all pivots become 1;
3. Eliminate each leading variable from the other equations

above it, starting from the right most leading variable and
moving to the left.

Example 2.1.20

Bring the system from Example 2.1.14 into reduced row echelon
form.

Solution.
Recall that the system of equations is given by

w + 2x+ 4y + 2z = 3

w + y + 2z = −1
2w − 2x− 2y + 2z = −6.

1. We already reduced this system to row echelon form in step 5.
from Example 2.1.14:

w + 2x+ 4y + 2z = 3

− 2x− 3y = −4
− y − 2z = 0.

2. Writing the above system as an augmented matrix, we divide the
second row by −2 and the third row by −1 to set all pivots to 1:1 2 4 2 3

0 −2 −3 0 −4
0 0 −1 −2 0


⇐⇒

1 2 4 2 3

0 1 3
2

0 2

0 0 1 2 0

R2 ← −1
2
R2

R3 ← −R3

3. In the last step, we remove the non-zero entries in the second and
third columns, to get the equivalent augmented matrix:1 2 0 −6 3

0 1 0 −3 2

0 0 1 2 0

R1 ← R1 − 4R3

R2 ← R2 − 3
2
R3

⇐⇒

1 0 0 0 −1
0 1 0 −3 2
0 0 1 2 0

R1 ← R1 − 2R2
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Note that the solution to this system in reduced row echelon form is
given by the equations 

w = −1
x = 2 + 3z
y = −2z

which leads to the same solution set as in Example 2.1.14.

General solution to a system of linear equations

Once a system of linear equations is in reduced row echelon form, it is
very easy to find the general solution, using the following method:

1. Complete rows of zeros are ignored.

2. If there is a row of zeros except the last entry (the one in the
augmented part) is non-zero, then the system has no solution.

3. Otherwise, we express the leading variables in terms of the free
variables, as explained earlier.

4. If there is no free variable, then the system has a unique solution,
otherwise, it has infinitely many solutions.

It follows from the above that a system of linear equations either has no
solution, one solution, or infinitely many solutions. If it has at least one
solution, we say that it is consistent, otherwise, it is inconsistent.

A system of m linear equations in n variables is typically inconsistent
if m > n; the only exception is when the system in reduced row ech-
elon form contains m − n rows of the form 0 = 0. Similarly, such a
system is likely consistent if m < n, but we expect to have n−m free
variables. In other words, for a general system of m linear equations in
n variables, we expect to have:

• no solutions if m > n;

• infinitely many solutions if m < n;

• a unique solution if m = n.

Our expectations are realised if the system in reduced row echelon form
does not contain any rows of the form 0 = 0; this means that the system
does not contain any redundant equations.

We summarise the above discussion as the following theorem:
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Theorem 2.1.21

Consider the general system of m linear equations in n variables:
a1,1x1 + a1,2x2 + · · · + a1,nxn = b1
a2,1x1 + a2,2x2 + · · · + a2,nxn = b2

...
... . . . ... =

...
am,1x1 + am,2x2 + · · · + am,nxn = bm

Assume that this system has been brought into reduced row
echelon form and there are no rows of the form 0 = 0. Then its
solution set S satisfies one of the following:

• S consists of a single unique solution if and only if m = n
and all pivots lie on the diagonal of the augmented matrix,
that is, the reduced row echelon form looks like

x1 = c1
x2 = c2

. . . =
...

xn = cm

• S contains infinitely many solutions if and only if m < n
and the system of equations is consistent;

• S = ∅ if and only if the system is inconsistent.

A system of linear equations where all the constant coefficients are
zero is called homogeneous. Note that a homogeneous system is al-
ways consistent: assigning 0 to every variable always yields a solution.
Moreover, if a homogeneous system has more variables than equations,
then it has infinitely many solutions. We shall return to this later, as
Exercise 2.6.38.
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Example 2.1.22

For each of the following systems of linear equations:

(a) write it in matrix form;
(b) reduce it to row echelon form;
(c) reduce it to reduced row echelon form;
(d) find the solution set in R3.

(i)


x1 + x3 + 4x4 = −1
2x1 − x2 + x3 + 7x4 = −2
−2x1 + x2 − 6x4 = 2

x1 + x2 + x3 + 4x4 = −1

(ii)


a + c = 2

a+ b+ c+ d = 3

2a+ b+ 2c+ 2d = 6

a+ 2b+ c = 4

(iii)

−x1 + 3x2 + 4x3 = 0

x1 + 9x3 = 0

x1 − 2x2 + x3 = −2

Solution.

(i) (a) The augmented matrix is


1 0 1 4 −1
2 −1 1 7 −2
−2 1 0 −6 2
1 1 1 4 −1


(b) The reduction is done column by column using elementary

row operations as follows:
1 0 1 4 −1
2 −1 1 7 −2
−2 1 0 −6 2
1 1 1 4 −1



⇐⇒


1 0 1 4 −1
0 −1 −1 −1 0
0 1 2 2 0
0 1 0 0 0

R2 ← R2 − 2R1

R3 ← R3 + 2R1

R4 ← R4 −R1

⇐⇒


1 0 1 4 −1
0 1 0 0 0
0 1 2 2 0
0 −1 −1 −1 0

R2 ← R4

R4 ← R2
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⇐⇒


1 0 1 4 −1
0 1 0 0 0
0 0 2 2 0
0 0 −1 −1 0

R3 ← R3 −R2

R4 ← R4 +R2

⇐⇒


1 0 1 4 −1
0 1 0 0 0
0 0 1 1 0
0 0 1 1 0

R3 ← 1
2
R3

R4 ← −R4

⇐⇒


1 0 1 4 −1
0 1 0 0 0
0 0 1 1 0
0 0 0 0 0


R4 ← R4 −R3

Echelon form

(c) The reduced row echelon form is obtained similarly column
by column, but working from the right to left. Here, only one
step is needed using elementary row operations, which leads
to:

1 0 0 3 −1
0 1 0 0 0
0 0 1 1 0
0 0 0 0 0


R1 ← R1 −R3

Reduced row echelon form

(d) The solution set can then be found with back substitution:{
(−1, 0, 0, 0) + x4 (−3, 0,−1, 1)

∣∣ x4 ∈ R
}

.

(ii) (a) The augmented matrix is


1 0 1 0 2
1 1 1 1 3
2 1 2 2 6
1 2 1 0 4


(b) Reduction column by column leads to:

1 0 1 0 2
1 1 1 1 3
2 1 2 2 6
1 2 1 0 4



⇐⇒


1 0 1 0 2
0 1 0 1 1
0 1 0 2 2
0 2 0 0 2

R2 ← R2 −R1

R3 ← R3 − 2R1

R4 ← R4 −R1
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⇐⇒


1 0 1 0 2
0 1 0 1 1
0 0 0 1 1
0 0 0 −2 0

R3 ← R3 −R2

R4 ← R4 − 2R2

⇐⇒


1 0 1 0 2
0 1 0 1 1
0 0 0 1 1
0 0 0 0 2


R4 ← R4 + 2R3

Echelon form

(c) Again only one step is needed to obtain the reduced row ech-
elon form:

1 0 1 0 | 2
0 1 0 0 0
0 0 0 1 1
0 0 0 0 2

R2 ← R2 −R3

Reduced row echelon form
(d) The last row has all variable coefficients 0 and constant coef-

ficient 2, which is impossible. Therefore, there are no solu-
tions.

(iii) (a) The augmented matrix is

−1 3 4 0
1 0 9 0
1 −2 1 −2


(b) Reduction column by column leads to:−1 3 4 0

1 0 9 0
1 −2 1 −2


⇐⇒

−1 3 4 0
0 3 13 0
0 1 5 −2

R2 ← R2 +R1

R3 ← R3 +R1

⇐⇒

 1 −3 −4 0
0 1 5 −2
0 3 13 0

R1 ← −R1

R2 ← R3 − 3R2

R3 ← R2

⇐⇒

 1 −3 −4 0
0 1 5 −2
0 0 −2 6


R3 ← R3 − 3R2

Echelon form

(c) The reduced row echelon form is obtained by setting all pivots
equal to 1, followed by elementary row operations on the third
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and then the second column: 1 −3 −4 0
0 1 5 −2
0 0 −2 6


⇐⇒

 1 −3 −4 0
0 1 5 −2
0 0 1 −3


R3 ← −1

2
R3

⇐⇒

 1 −3 0 | −12
0 1 0 | 13
0 0 1 | −3

R1 ← R1 + 4R3

R2 ← R2 − 5R3

⇐⇒

 1 0 0 27
0 1 0 13
0 0 1 −3

R1 ← R1 + 3R2

Reduced row echelon form

(d) Back substitution is a formality: we can read off the solution:
(x1, x2, x3) = (27, 13,−3) is the unique solution.

2.2 Vector spaces

2.2.1 R-coordinate space
“What is a vector?" is a common question asked by students learning
linear algebra. The answer to this question is “a vector is an element
of a vector space". But then what is a “vector space"? The answer will
be given in Definition 2.2.7 if you’d like to skip ahead, but first we will
examine the prototypical example of a vector space to get our bearings.

Definition 2.2.1

For each n ∈ N, n-dimensional R-coordinate space is the set

Rn :=



u1

u2
...
un


∣∣∣∣∣∣∣∣∣ u1, u2, . . . , un ∈ R

 .

An element u ∈ Rn is called a column vector, and we will
typically write ui for its ith component.

Notice that rather than writing an element u ∈ Rn as an n-tuple (u1, . . . , un)
as we did in Remark 1.3.26, we have instead written it in this new col-
umn notation. The reason for this will become apparent when we intro-
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duce the rule for matrix multiplication later in the course. Since vectors
in Rn are just n-tuples written in this new column notation, it follows
that any two column vectors u,v ∈ Rn are equal if and only if each of
their n components are equal.

The column vector in Rn whose components are all 0 is called the zero
vector and is denoted

0 :=


0
0
...
0

 ∈ Rn

We often visualise a vector v as a directed line segment by drawing
a line from 0 to the point with coordinates given by v; here, 0 corre-
sponds to the origin in Rn. An example in R2 is given in Figure 2.1.

0

3

2 v =

[
3
2

]

Figure 2.1: A vector visualised as a directed line segment.

We define two operations on Rn: vector addition and scalar multipli-
cation.

Definition 2.2.2: Vector addition

For any


u1

u2
...
un

,

v1
v2
...
vn

 ∈ Rn, we define


u1

u2
...
un

+


v1
v2
...
vn

 :=


u1 + v1
u2 + v2

...
un + vn

 .



2.2. VECTOR SPACES 71

Example 2.2.3

For example, if v =

[
3
2

]
and w =

[
2
−1

]
, then v + w =

[
5
1

]
.

Depicting these vectors as arrows in the plane, we see that v+w
is one diagonal of the parallelogram spanned by v and w (Fig-
ure 2.2); because of this, the rule for vector addition is often
called the parallelogram rule.

0

w

v
w

v

v +w

Figure 2.2: The sum of v and w is one diagonal of the parallelogram
that they define.

Remark 2.2.4

In Figure 2.2, we drew arrows from the endpoints of v and w to
v +w, and labelled them respectively w and v. This is because
when we draw pictures we often identify a vector with the arrow
it represents —that is, we identify a vector v with any arrow with
the same length and direction as the arrow from 0 to v. Strictly
speaking, a vector is simply a point in space and so this does
not make sense with regards to our definitions. It is possible
to make mathematical sense of this in the field of mathematics
called affine geometry.
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Definition 2.2.5: Scalar multiplication

For any


u1

u2
...
un

 ∈ Rn and c ∈ R, we define

c


u1

u2
...
un

 :=


cu1

cu2
...

cun

 .

We follow the convention of denoting −1v by −v.

If v ∈ Rn is a non-zero vector and c ∈ R is a non-zero real number then
we can visualise cv as the vector whose length is |c| times the length of
v. Its direction is the same as v if c > 0 and opposite to v if c < 0.

Example 2.2.6

Consider the vector v :=

[
3
2

]
∈ R2. The equalities

3v = 3

[
3
2

]
=

[
9
6

]
and − v = −

[
3
2

]
=

[
−3
−2

]
.

are depicted graphically in Figure 2.3.

0

3v

2v

v

−v

Figure 2.3: Scalar multiples of the vector v.
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0

v

w

−w

v −w

(a) The formal definition of v −w.

0

w

v
w

v

v −w

(b) The difference of v and w is the
second diagonal of the parallelogram
that they define.

Figure 2.4: Two visualisations of the difference between two vectors.

We can also define subtraction:

u− v := u+ (−v).

This is shown visually in Figure 2.4.

These operations behave in many ways as expected, which we will
prove in 2.2.8 .

2.2.2 Abstract vector spaces

Now that we have seen the rules for adding and scaling vectors in Rn,
we will give the definition of an abstract vector space.
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Definition 2.2.7

An R-vector space is a set V , whose elements we call vectors,
equipped with two operations:

• vector addition

V × V V

(u,v) u+ v,

• scalar multiplication (or scaling)

R× V V

(a,v) av.

We will call the elements of R scalars. The addition operation is
required to satisfy the following properties:

1. Associative law. For all u,v,w ∈ V ,

(u+ v) +w = u+ (v +w).

2. Commutative law. For all u,v ∈ V ,

u+ v = v + u.

3. Existence of zero. There exists a zero element 0 ∈ V such
that for all v ∈ V ,

v + 0 = v = 0+ v.

4. Existence of additive inverses. For each v ∈ V , there
exists an element −v ∈ V such that

v + (−v) = 0 = (−v) + v.

The scaling operation is required to satisfy the following com-
patibility properties:

1. Distributive laws. For all a, b ∈ R, u,v ∈ V ,

• a(u+ v) = au+ av,

• (a+ b)v = av + bv.

2. Compatibility of multiplication. For all a, b ∈ R, v ∈ V ,

(ab)v = a(bv).

3. Compatibility of multiplicative identity. For all v ∈ V ,

1v = v.
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That is quite the list to remember! This definition might seem intim-
idating at first read, but with a bit more experience we’ll come to see
that the properties we require of vector addition and scalar multipli-
cation are actually fairly intuitive. To summarize, a vector space is a
set V equipped with sensible rules for adding and scaling vectors. In-
deed, let’s check that our prototypical R-vector space Rn satisfies these
properties.

Proposition 2.2.8

Equipped with the addition rule given by Definition 2.2.2 and the
scaling rule given in Definition 2.2.5, Rn is an R-vector space.

Proof. We prove associativity of addition and the existence of additive
inverses, and leave the remainder as an exercise.

• Associativity follows from the following calculation:

u+ (v +w) =

u1
...
un

+


v1...
vn

+

w1
...
wn




=

u1
...
un

+

v1 + w1
...

vn + wn


=

u1 + (v1 + w1)
...

un + (vn + wn)


=

 (u1 + v1) + w1
...

(un + vn) + wn


=

u1 + v1
...

un + vn

+

w1
...
wn


=


u1

...
un

+

v1...
vn


+

w1
...
wn


= (u+ v) +w.

• That −u is an additive inverse for u follows from the following
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calculation:

u+ (−u) = u+ (−1)u =

u1
...
un

+

−u1
...
−un


=

u1 + (−u1)
...

un + (−un)


=

0...
0

 = 0.

The advantage of the abstract definition is that if we prove something
about vector spaces, then it will apply to all vector spaces. This is
the approach used in abstract algebra. Let’s have a look at a couple
important examples of vector spaces.
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Example 2.2.9

The following are examples of R-vectors spaces. It is a good
exercise to check that these satisfy all of the properties required
in Definition 2.2.7.

1. The set

R[x] :=

{
k∑

j=0

ajx
j

∣∣∣∣∣ k ∈ N, aj ∈ R

}
,

which consists of all polynomials in one variable x with
coefficients in R. Addition and scalar multiplication are
defined in the obvious way.

2. Let X be a set, let V be an R-vector space, and consider the
set V X consisting of all functions from X to V (recall Def-
inition 1.4.6). We define addition and scaling pointwise on
V X . In detail, the sum of two functions f, g : X → V is
defined to be the function

f + g : X V

x f(x) + g(x).

Similarly, the result of scaling a function f : X → V by a
scalar c ∈ R is defined to be the function

cf : X V

x cf(x).

The zero vector in V X is the constant zero function

0 : X V

x 0.

2.2.3 Linear subspaces

When we define some type of mathematical object, such as a set or
vector space, we also want to have a good definition of sub-objects. For
example, in Definition 1.3.4 we defined the notion of a subset of a set.
Similarly, we would now like to give a good definition of what it means
to be a “sub-vector space”.
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Definition 2.2.10

Let V be an R-vector space. A subset S ⊆ V is said to be a
linear subspace (or vector subspace) of V if

1. Closed under addition. If s1, s2 ∈ S then s1 + s2 ∈ S.

2. Closed under scalar multiplication. If c ∈ R, s ∈ S then
cs ∈ S.

3. Addition and scalar multiplication in S satisfy the proper-
ties in Definition 2.2.7

In other words, a subset S ⊆ V of a vector space V is said to be a
linear subspace if it inherits a vector space structure from V . As a
working mathematician (or computer scientist, physicist, or engineer),
most of the vector spaces that you encounter “in the wild” will be linear
subspaces of some larger vector space, often Rn, R[x], or V X (where
X is some set and V is a vector space).

You are likely a bit concerned about the third point in the definition
above: it would be a lot of work to verify all of the properties in Def-
inition 2.2.7 every time that we want to check if a subset is a linear
subspace. But don’t fear! The proposition below comes to the rescue:

Proposition 2.2.11: Linear subspace criteria

Let V be an R-vector space. A subset S ⊆ V is a linear subspace
of V if and only if it satisfies the following properties:

1. Closed under addition. If s1, s2 ∈ S then s1 + s2 ∈ S.

2. Closed under scalar multiplication. If c ∈ R, s ∈ S then
cs ∈ S.

3. Contains the origin. 0 ∈ S.

Proof. Let S ⊆ V be a subset of a vector space V . Clearly, if S is a
linear subspace then it satisfies the three criteria above.

Conversely, suppose that S ⊆ V satisfies the three criteria in the propo-
sition. We need to check that it satisfies the properties in Definition
2.2.7. This is very straightforward, but tedious to write out explicitly,
so let’s just check commutativity of addition in S to give you the idea:

Let s1, s2 ∈ S. But since S ⊆ V then s1, s2 ∈ V as well, and we
already know that addition in V is commutative. Thus,

s1 + s2 = s2 + s1.
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While the definition is likely new to you, it turns out that you are actu-
ally already familiar with many examples of linear subspaces! Indeed,
we will show that the solution set of any homogeneous system of linear
equations is a linear subspace.

Proposition 2.2.12

Consider the linear system

a11x1 + · · ·+ a1nxn = b1
...

am1x1 + · · ·+ amnxn = bm

in n variables x1, . . . , xn, where aij ∈ R, bi ∈ R for 1 ≤ i ≤ m
and 1 ≤ j ≤ n. Let S ⊆ Rn denote the solution set of this linear
system. If b = 0 then S is a linear subspace of Rn.

Proof. We just apply Proposition 2.2.11.

• Clearly 0 is a solution to this homogeneous linear system:

n∑
j=1

a1j0 = 0

...
n∑

j=1

amj0 = 0.

• Let x :=

x1
...
xn

 and y :=

y1...
yn

 be solutions to this homogeneous

linear system, i.e.,

n∑
j=1

a1jxj = 0

...
n∑

j=1

amjxj = 0

and
n∑

j=1

a1jyj = 0
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...
n∑

j=1

amjyj = 0.

Then we have

n∑
j=1

a1j(xj + yj) =
n∑

j=1

a1jxj +
n∑

j=1

a1jyj = 0 + 0 = 0

...
n∑

j=1

amj(xj + yj) =
n∑

j=1

amjxj +
n∑

j=1

amjyj = 0 + 0 = 0.

so x+ y is also a solution.

• Let x :=

x1
...
xn

 be a solution to this homogeneous linear system,

and let c ∈ R. Then

n∑
j=1

a1j(cxj) = c
n∑

j=1

a1jxj = c0 = 0

...
n∑

j=1

amj(cxj) = c

n∑
j=1

amjxj = c0 = 0.

Thus, cvecx is also a solution to this homogeneous linear system.

Exercise 2.2.13

Continuing with the notation established in Proposition 2.2.12,
show that if b 6= 0, then S is not a linear subspace of Rn.
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Example 2.2.14

Let V be an R-vector space.

1. {0} is a linear subspace of V .

2. V is a linear subspace of itself.

3. ∅ is not a linear subspace of V .

4. For any fixed k ∈ N, consider the subset of R[x] consisting
of all polynomials of degree at most k, denoted by

Rk[x] :=

{
k∑

j=0

ajx
j

∣∣∣∣∣ aj ∈ R

}
.

For any
k∑

j=0

ajx
j ,

k∑
j=0

bjx
j ∈ Rk[x] and c ∈ R we have

•
∑k

j=0 ajx
j +
∑k

j=0 bjx
j =

∑k
j=0(aj + bj)x

j ∈ Rk[x]

• c
∑k

j=0 ajx
j =

∑k
j=0(caj)x

j ∈ Rk[x]

• 0 =
∑k

j=0 0x
j ∈ Rk[x]

Thus, we have shown that Rk[x] is a linear subspace of
R[x].

Exercise 2.2.15

Let V be a vector space, and let S1 and S2 be linear subspaces of
V . Show that S1 ∩ S2 is a linear subspace of V .

Exercise 2.2.16

For those students who have seen the definition of continuity in
MATHS 130, let C0(R,R) ⊆ RR denote the subset of all contin-
uous functions from R to itself. This is a linear subspace of the
vector space RR.
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Exercise 2.2.17

For each of the following subsets of R2, decide whether or not it
is a linear subspace.

1. A straight line passing through the origin;

2. A straight line which does not contain the origin;

3. The circle of radius r > 0 centred at the origin:{[
x
y

]
∈ R2

∣∣∣∣ x2 + y2 = r2
}
;

4. The lattice Z2 shown in Figure 1.2.

5. The union of the horizontal and vertical axes, i.e.,{
c1

[
1
0

] ∣∣∣∣ c1 ∈ R
}
∪
{
c2

[
0
1

] ∣∣∣∣ c2 ∈ R
}
.

2.3 Linear combinations

2.3.1 Linear combinations and span

Definition 2.3.1

Let V be an R-vector space, and let X ⊆ V . A linear combina-
tion of vectors in X is an expression of the form

c1x1 + · · ·+ ckxk,

where c1, . . . , ck ∈ R and x1, . . . ,xk ∈ X . The set of all possible
linear combinations of vectors in X is called the span of X , and
is denoted SpanX .
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Example 2.3.2

Consider the vectors u :=

[
1
1

]
and v :=

[
1
0

]
in R2.

Clearly, w := 3u+ 2v (Figure 2.5) is one linear combination of
u and v.
More generally, every intersection point in Figure 2.5 is a linear
combination of the form au + bv for a, b ∈ Z. In fact, for each
intersection point there is exactly one way to express it as a linear
combination of the vectors u and v
Even more generally, if we allow a, b ∈ R, then we can see that
every point in the plane is a linear combination of the vectors u
and v. Thus, we conclude that Span{u,v} = R2.

0 v

u

w

Figure 2.5: Linear combinations of u and v, as defined in Example
2.3.2.

Let V be a vector space. Given a subset X ⊆ V , a natural question to
ask is “what is the smallest linear subspace containing X?” The answer
is SpanX , as stated (in more technical language) in the proposition
below:
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Proposition 2.3.3

Let V be a vector space, and let X ⊆ V . Then the following
hold:

1. X ⊆ SpanX .

2. SpanX is a linear subspace of V .

3. For any linear subspace S ⊆ V ,

X ⊆ S =⇒ SpanX ⊆ S.

Proof. Let u,v ∈ SpanX be arbitrary, and let c ∈ R. By definition,

u =
k∑

i=1

aixi = a1x1 + · · ·+ akxk,

v =
l∑

j=1

bjyj = b1y1 + · · ·+ blyl,

for some scalars ai, bj ∈ R and vectors xi,yj ∈ X.

1. Obvious.

2. • 0 is a linear combination of vectors from X .

• Sums of linear combinations of vectors from X are linear
combinations of vectors from X:

u+ v = a1x1 + · · ·+ akxk + b1y1 + · · ·+ blyl.

• Scalar multiples of linear combinations of vectors from X
are linear combinations of vectors from X:

cu = c
k∑

i=1

aixi =
k∑

i=1

(cai)xi.

3. Suppose X ⊆ S. Since S is assumed to be a linear subspace,
then it is closed under addition and scalar multiplication, so u =∑k

i=1 aixi ∈ S. Thus, SpanX ⊆ S.

Exercise 2.3.4

Let V be a vector space and let X ⊆ V . Prove that
Span(SpanX) = SpanX .
(Hint: Use Proposition 2.3.3)
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Definition 2.3.5

Let S ⊆ V be a linear subspace, and let X ⊆ V . If SpanX = S
then we say that X spans S.

Example 2.3.6

For any vector space V , we of course have the empty subset ∅ ⊆
V . Show that

Span ∅ = {0}.

Solution.
By Proposition 2.3.3, the Span ∅ is the smallest linear subspace of V
containing ∅. Since the empty subset is contained in every linear sub-
space of V , then Span ∅ must be the smallest among all the linear sub-
spaces of V . Hence, it must be {0}.

Let V be a vector space. Given a subset X ⊆ V , and a vector v ∈ V ,
we commonly encounter the following questions:

1. Is v a linear combination of the vectors in X? In other words, is
v ∈ SpanX?

2. If so, in how many ways can we express v as a linear combination
of the vectors in X?

We will now study these questions.

Example 2.3.7

Consider the subset

X :=


10
0

,
01
1

 ⊆ R3.

Are the following vectors linear combinations of vectors in X?

(i)

10
1

;
(ii)

32
2

.
Solution. (i) Suppose there exist c, d ∈ R such that10

1

 = c

10
0

+ d

01
1

 =

c0
0

+

0d
d

 =

cd
d

.
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Equating coefficients yields a system of three linear equations in

c and d, which has no solution. It follows that

10
1

 is not a linear

combination of X .

(ii) Applying the same method (or by inspection), we find

32
2

 = 3

10
0

+ 2

01
1



so

32
2

 is a linear combination of X .

Generalizing the method we used to solve Example 2.3.7, we come up
with the following algorithm for solving these problems:

Algorithm 2.3.8

Problem: Given vectors u1, . . . ,uk,v ∈ Rn, find all possible
scalars c1, . . . , ck ∈ R such that

k∑
j=1

cjuj = v

Solution: Solve the linear system above for c :=

c1...
ck

 . To do

this, transform the augmented matrix[
u1 · · · uk v

]
into row echelon form, and then back-substitute to get the general
solution (if one exists).
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Example 2.3.9

Consider the following vectors in R2

v :=

[
1
1

]
, u1 :=

[
1
0

]
, u2 :=

[
3
1

]
, u3 :=

[
0
1

]
.

Determine if
v ∈ Span {u1,u2,u3} .

If so, express v as a linear combination of these three vectors in
the most general way possible.

Solution.
We need to solve the linear system

c1

[
1
0

]
+ c2

[
3
1

]
+ c3

[
0
1

]
=

[
1
1

]

whose augmented matrix is

[
1 3 0 1
0 1 1 1

]
.

This is already in row echelon form. Let t := c3. Then by back-sub:

c2 = 1− t

c1 = 1− 3c2 = −2 + 3t.

Thus, for any t ∈ R we have

(−2 + 3t)

[
1
0

]
+ (1− t)

[
3
1

]
+ t

[
0
1

]
=

[
1
1

]
.

Exercise 2.3.10

For each k ≥ 3, find a set of cardinality k which spans R3. (We
will see later that no set of cardinality less than 3 may span R3.)
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2.3.2 Linear independence

Definition 2.3.11

Let V be an R-vector space.

• A finite list of vectors (v1, . . . ,vk) from V is said to be
linearly independent if for any scalars c1, . . . , ck ∈ R we
have

k∑
j=1

cjvj = 0 =⇒ c1 = · · · = ck = 0.

Otherwise, we say that the list is linearly dependent.

• A subset X ⊆ V is said to be linearly independent if
every finite list of unique vectors from X is linearly inde-
pendent. Otherwise, we say that X is linearly dependent.

In other words, a list of vectors (v1, . . . ,vk) is linearly independent if
the only possible way to write 0 as a linear combination of these vectors
is the trivial one

0 = 0v1 + · · ·+ 0vk.

On the other hand, if you can find a way to write 0 as a linear combina-
tion

0 = c1v1 + . . .+ ckvk

and at least one of the scalars c1, . . . , ck is not zero, then the list (v1, . . . ,vk)
is linearly dependent.

When first encountering these concepts, students are often confused
by why they deserve to be called “linear (in)dependence”. Proposition
2.3.14 will show why this terminology is appropriate.

Example 2.3.12

Are the following sets of vectors in R3 linearly independent?

(i)


10
0

,
01
1

,
10
1

;

(ii)


10
0

,
01
1

,
32
2

.

Solution.
We just apply Algorithm 2.3.8.
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(i) Suppose there exist a, b, c ∈ R such that00
0

 = a

10
0

+ b

01
1

+ c

10
1

 =

a+ c
b

b+ c

.
Equating components yields a homogeneous system of three lin-
ear equations in a, b and c, and its only solution is a = b = c = 0,
so the given set of vectors is linearly independent.

(ii) We have 00
0

 = 3

10
0

+ 2

01
1

−
32
2

,
so the given set of vectors is linearly dependent.

Example 2.3.13

Let V be a vector space. Then it is vacuously true that the empty
subset ∅ ⊆ V is linearly independent.

In some sense, a subset X of a vector space V is linearly dependent
when the information contained within it is ‘redundant’—there is a vec-
tor you can remove without losing any information, because you can
regain it by taking combinations of other vectors in the set.
On the other hand, if X is linearly independent then it is irredundant in
the following way: every linear combination of elements of X is only a
linear combination in exactly one way (up to the ordering of the terms
in the sum).
This is made precise in the proposition below.

Proposition 2.3.14

Let V be an R-vector space and X ⊆ V . Then the following
hold:

1. X is linearly independent if and only if every vector in
SpanX can be written uniquely as a linear combination of
distinct vectors from X .

2. X is linearly dependent if and only if there exists a vector
y ∈ X and distinct vectors x1, . . . ,xk ∈ X (distinct from
y) such that

y =
k∑

j=1

cjxj

for some scalars c1, . . . , ck ∈ R.



90 LINEAR ALGEBRA

Proof. 1. • ( =⇒ ). Suppose that a vector u ∈ SpanX can be
expressed in two ways as a linear combination of vectors
x1, . . . ,xk ∈ X:

k∑
j=1

ajxj = u =
k∑

j=1

bjxj.

Subtracting u gives us

0 =
k∑

j=1

(aj − bj)xj.

Since X is assumed to be linearly independent then for all
1 ≤ j ≤ n we have

aj − bj = 0.

• (⇐= ). Let x1, . . . ,xk ∈ X be distinct and suppose that

0 =
k∑

j=1

cjxj

for some scalars c1, . . . , ck ∈ R. But we also have

0 =
k∑

j=1

0xj,

so by the uniqueness assumption then c1 = · · · = ck = 0.

2. • ( =⇒ ). Suppose X is linearly dependent. Then by def-
inition there exist distinct vectors x1, . . . ,xk+1 ∈ X and
scalars a1, . . . , ak+1 ∈ R such that

0 =
k+1∑
j=1

ajxj,

where at least one of the scalars a1, . . . , ak+1 is non-zero.
Without loss of generality, let’s assume ak+1 6= 0. Then we
can rearrange to get

xk+1 =
k∑

j=1

−aj
ak+1

xj.
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• ( ⇐= ). Suppose there exists a vector y ∈ X and distinct
vectors x1, . . . ,xk ∈ X (distinct from y) such that

y =
k∑

j=1

cjxj.

Then rearranging gives us

0 = c1x1 + · · · ckxk − 1y,

so X is linearly dependent.

Exercise 2.3.15

Let V be an R-vector space and X ⊆ V . Prove that X is lin-
early dependent if and only if every vector v ∈ SpanX can be
expressed in more than one way as a linear combination of the
vectors in X .
(Hint: By Definition 2.3.11, X is linearly dependent if and only
if 0 can be written in more than one way as a linear combination
of the vectors in X)

2.3.3 Bases

Definition 2.3.16

A subset B ⊆ V is said to be a basis for V if B is linearly
independent and SpanB = V . If B is totally ordered (i.e. a list),
then we call it an ordered basis (or frame) for V .

The following Corollary is immediate from part (1) of Proposition 2.3.14.

Corollary 2.3.17

Let V be an R-vector space, and let B ⊆ V . B is a basis for V if
and only if every vector in V can be written uniquely as a linear
combination of distinct vectors from B.

Corollary 2.3.17 says that a basis can serve as a coordinate system—this
will be explored in more detail in MATHS 250, but we give a preview
in the remark below:
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Remark 2.3.18

Let V be an R-vector space, and suppose that B := (b1, . . . ,bn)
is an ordered basis for V . Then by Corollary 2.3.17, every vector
v ∈ V can be expressed uniquely as

v =
n∑

j=1

cjbj.

The unique scalars cj ∈ R are called the coordinates of v with
respect to the ordered basis B. This allows us to define the coor-
dinate mapping [ ]

B
: V Rn

where [
v
]
B
:=

c1...
cn

 .

Notice that for any x ∈ Rn we have

x =


x1

x2
...
xn

 =


x1

0
...
0

+


0
x2
...
0

+ · · ·+


0
0
...
xn



= x1


1
0
...
0

+ x2


0
1
...
0

+ · · ·+ xn


0
0
...
1

 .

By Corollary 2.3.17, we have thus found a basis for Rn.

Definition 2.3.19

The standard ordered basis of Rn is the list (e1, . . . , en) where
ej ∈ Rn is the unique vector such that

rowi (ej) =

{
1 if i = j

0 if i 6= j.
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Example 2.3.20

It can be shown that


10
0

,
01
1

,
10
1

 (from Example 2.3.12)

spans R3. Since we have already shown that this set is linearly
independent, then it is a basis for R3.

Example 2.3.21

Let V be a vector space, and consider the empty subset ∅ ⊆ V .
Since Span ∅ = {0} by Example 2.3.6 and ∅ is linearly indepen-
dent by Example 2.3.13 then ∅ is a basis for the linear subspace
{0} ⊆ V .

Theorem 2.3.22

Let V be an R-vector space. Let X ⊆ V be any subset, and let
B,B′ ⊆ V both be bases for V . Then the following hold:

1. |X| > |B| =⇒ X is linearly dependent;

2. |X| < |B| =⇒ SpanX 6= V

3. |B| = |B′|.

Proof. Though this theorem is true more generally, we will prove it in
the case where B and B′ are finite sets.

1. Let B := {b1, . . . ,bn}. Choose m > n distinct vectors v1, . . . ,vm ∈
X , and let

S := {v1, . . . ,vm} .

Since B is a basis, we can express every vector vi as a linear
combination of the vectors in B, say

vi =
n∑

j=1

ai,jbj.

We have to show that S is linearly dependent, so consider the
equation

c1v1 + · · ·+ cmvm = 0.

Replacing and grouping terms together in the bj’s yields

(c1a1,1+ · · ·+ cmam,1)b1+ · · ·+(c1a1,n+ · · ·+ cmam,n)bn = 0
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Since the bj’s are linearly independent all these coefficients have
to be zero. This gives us the homogeneous linear system

c1a1,1 + · · ·+ cmam,1 = 0

...
c1a1,n + · · ·+ cmam,n = 0

which consists of n equations in the m unknowns c1, . . . , cm.
Since m > n, this system has at least one non-trivial solution,
which proves that S is linearly dependent.

2. We can use a similar approach to part (1). It is a bit tedious to
write out, so we leave it as a (tricky) exercise for the reader.

3. This follows immediately from parts (1) and (2).

Corollary 2.3.23

Let V be an n-dimensional vector space, where n ∈ N. Let
X ⊆ V be a subset with |X| = n. Then the following hold:

1. X linearly independent =⇒ X is a basis for V

2. SpanX = V =⇒ X is a basis for V

By part (3) of Theorem 2.3.22, every possible basis of a given vector
space must have the same cardinality. Thus, we give this quantity a
name:

Definition 2.3.24

Let V be a vector space, and let B ⊆ V be a basis. The dimen-
sion of V is defined to be

dimV := |B|.

If dimV is finite then we say that V is finite-dimensional. If
dimV is infinite then we say that V is infinite-dimensional.

Example 2.3.25

• dimRn = |{e1, . . . , en}| = n.

• dim{0} = |∅| = 0, by Example 2.3.21.
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Exercise 2.3.26

1. dim (Rk[x]) =

2. dim (R[x]) =

2.4 Geometry

2.4.1 Lines and planes in Rn

Depending on the context, we sometimes call elements of Rn points.

Definition 2.4.1

Let v,w ∈ Rn with v 6= 0. The line L through w with direc-
tion vector v is the set

{w + λv : λ ∈ R }.

We also call L the line through w parallel to v. The set L is
depicted in Figure 2.6.

The equation λv +w is called a parametric equation for L (λ
is the parameter). The elements of L are usually thought of as
points. They are said to be on the line L.

0

w

v

w + v

w + 2v

w + 3v

L

Figure 2.6: The line L with direction vector v through w.

Note that replacing the direction vector v by a scalar multiple does not
change the line L, and neither does replacing w by another point on L.
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In particular, there are many parametric equations for a given line.

Example 2.4.2: The line through two points

If u,w ∈ Rn, then

{λ(u−w) +w : λ ∈ R }

contains u and w: λ = 0 yields w and λ = 1 yields u. If u 6= w,
then this is the equation for a line, and it is unique.

Note that this can also be written as

{λu+ (1− λ)w : λ ∈ R }.

Definition 2.4.3

Let u,v,w ∈ Rn with {u,v} linearly independent. The plane
P through w with direction vectors u and v is

{λu+ µv +w : λ, µ ∈ R }.

We also call P the plane through w parallel to u and v.

The equation λu+ µv+w is called a parametric equation for
P (with µ and λ being the parameters). The elements of P are
usually thought of as points. They are said to be on the plane P .

As in the case of lines, there are many parametric equations for a given
plane: we can replace w by any vector on the plane, and {u,v} can be
replaced by any two linearly independent vectors that are linear combi-
nations of {u,v}.

Example 2.4.4: Plane through three points

If u,v,w ∈ Rn, then

{λ(u−w) + µ(v −w) +w : λ, µ ∈ R }

contains u, v and w: λ = µ = 0 yields w, (λ, µ) = (1, 0) yields
u and (λ, µ) = (0, 1) yields v. If u, v and w are not collinear,
then this is a plane, and it is unique.

Note that this can also be written as

{λu+ µv + (1− λ− µ)w : λ, µ ∈ R }.
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Remark 2.4.5

One can generalise this procedure and keep increasing the num-
ber of direction vectors. If there are m linearly independent di-
rection vectors (and m parameters), the resulting object is an
affine subspace of Rn called an (affine) hyperplane of dimen-
sion m.

Example 2.4.6

Let u and v be linearly independent vectors in Rn and let T be
the triangle with vertices {0,u,v} (Figure 2.7). Suppose that
w = 1

2
u + 1

2
v and x = 1

2
u, and let m be the intersection point

of the line through 0 and w, and the line through v and x. Show
that m = 2

3
w.

m

w

v

u0 x

Figure 2.7: The triangle of Example 2.4.6.

Solution.
The line through 0 and w is given by:

{λw : λ ∈ R } =
{
λ
(
1
2
u+ 1

2
v
)
: λ ∈ R

}
.

The line through v and x is:

{µx+ (1− µ)v : µ ∈ R } =
{
µ1

2
u+ (1− µ)v : µ ∈ R

}
.

Consequently at m,

λ
(
1
2
u+ 1

2
v
)
= µ1

2
u+ (1− µ)v
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and so (
λ

2
− µ

2

)
u−

(
1− µ− λ

2

)
v = 0.

Since u and v are linearly independent we have(
λ

2
− µ

2

)
= 0 and

(
1− µ− λ

2

)
= 0.

Therefore λ = µ = 2/3 and so m = 1
3
u+ 1

3
v = 2

3
w, as required.

Besides parametric equations, there is another way to describe lines and
planes of Rn, namely as solutions to systems of linear equations in the
coordinates. This is called a Cartesian equation.

The simplest case is when there is just one equation. In this case, the
set of solutions has “dimension” one less than the ambient space. For
example, starting in R2, which has dimension 2, we obtain a set of
dimension 1, namely a line. Starting in R3, we obtain a set of dimension
2, namely a plane.

Example 2.4.7

Find a Cartesian equation for

(i) the line through
[
2
3

]
with direction vector

[
4
1

]
;

(ii) the plane through

62
1

 with directions vectors

21
1

 ,

 3
1
−1

.
Solution. (i) The line is

{
λ

[
4
1

]
+

[
2
3

]
, λ ∈ R

}
. Let

[
x
y

]
be a point

on the line. Equating coefficients, we find x = 4λ + 2 and y =
λ+ 3. Eliminating the parameter λ yields x− 4y + 10 = 0.

(ii) The plane is

λ

21
1

+ µ

 3
1
−1

+

62
1

, λ, µ ∈ R

. Let

xy
z

 be

a point on the line. Equating coefficients, we find

x = 2λ+ 3µ+ 6

y = λ+ µ+ 2

z = λ− µ+ 1

We may now eliminate the parameters from these two equations
to obtain 2x− 5y + z − 3 = 0.
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In general, a Cartesian equation for a line in R2 has the form

ax+ by + c = 0

with (a, b) 6= (0, 0). The line is then the set{[
x
y

]
: ax+ by + c = 0

}
.

Similarly, a Cartesian equation for a plane in R3 has the form

ax+ by + cz + d = 0

with (a, b, c) 6= (0, 0, 0).

Note that, just like for parametric equations, lines and planes have many
defining Cartesian equations. For example, we can multiply the whole
equation by a non-zero scalar to get an equivalent equation.

We can also reverse the procedure from Example 2.4.7, that is, given a
Cartesian equation for a line or a plane we may find find a parametric
equation.

Example 2.4.8

Find parametric equations for
1. the line with Cartesian equation 2x+ y = 4;
2. the plane with Cartesian equation 2x+ 3y + z = 6.

Solution.

1. We first find two distinct points on the line, such as u =

[
0
4

]
and

w =

[
1
2

]
. Next, following Example 2.4.2, the Cartesian equation

for the line is

{λ(u−w) +w : λ ∈ R } =
{
λ

([
0
4

]
−
[
1
2

])
+

[
1
2

]
: λ ∈ R

}
=

{
λ

[
−1
2

]
+

[
1
2

]
: λ ∈ R

}
.

2. Similarly, we can find three non-collinear points on the plane and
then follow Example 2.4.4 to find the parametric equation for the
plane.
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As mentioned earlier, the set of solutions to a single linear equation has
“dimension” one less than the ambient space. If we have two “indepen-
dent” linear equations, then the set of solutions has dimension two less.
For example, two linear equations in R3 usually determine a line. Ge-
ometrically, this line is the intersection between the two planes defined
by each of the equations. Note that problems arise if the two planes are
parallel. What would this imply for the two equations that define these
parallel planes?

Example 2.4.9

Find a pair of Cartesian equations that describe the line through32
1

 with direction vector

21
1

.
Solution.

The line is

λ

21
1

+

32
1

: λ ∈ R

. Let

xy
z

 be a point on the line.

Equating coefficients, we find

x = 2λ+ 3

y = λ+ 2

z = λ+ 1.

We can then isolate λ in one of the equations, say λ = z − 1, and
substitute it into the other two, to get

x = 2(z − 1) + 3 = 2z + 1

y = (z − 1) + 1 = z + 1.

Rewriting, we get a pair of Cartesian equations:

x− 2z − 1 = 0

y − z − 1 = 0.

Exercise 2.4.10

Let P be a plane in R3. Show that if 0 ∈ P , then (x,y ∈ P ) =⇒
(x+ y ∈ P ); and (x ∈ P, λ ∈ R) =⇒ λx ∈ P .

Conversely, show that if 0 6∈ P , then there exist x,y ∈ P such
that x + y 6∈ P ; and there exist x ∈ P and λ ∈ R such that
λx 6∈ P .
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2.4.2 Euclidean length, distance and angle

The notions of lengths, distances, and angles in R2 and R3 will be famil-
iar to you from everyday life and your studies of Euclidean geometry
in school. We will show how to define these concepts more generally
in Rn, where n is any natural number.

But first, we will define a less familiar operation called the Euclidean
scalar product, and we will show that all of the aforementioned concepts
in Euclidean geometry follows from this.

Euclidean scalar product

Definition 2.4.11

The Euclidean scalar product (or dot product, or Euclidean
inner product) on Rn is the binary function

( ) · ( ) : Rn × Rn R

defined by the formula

u · v :=
n∑

i=1

uivi = u1 v1 + · · ·+ un vn.

The name “scalar product” comes from the fact that the output is a
scalar (a real number). The name “dot product” comes from the nota-
tion.

Example 2.4.12−11
2

 ·
10
2

 = (−1)(1) + (1)(0) + (2)(2) = 3.



102 LINEAR ALGEBRA

Proposition 2.4.13: Properties of scalar product

The dot product on Rn satisfies the following properties for all
u,v,w ∈ V and all a ∈ R:

1. Bilinear.

(i) Biadditive.

• (u+ v) ·w = u ·w + v ·w
• u · (v +w) = u · v + u ·w

(ii) Bihomogeneous.

• (au) · v = a (u · v)
• u · (av) = a(u · v)

2. Commutative (or symmetric). u · v = v · u

3. Positive definite.

(i) u · u ≥ 0

(ii) u · u = 0 =⇒ u = 0

Proof. We prove that the dot product is positive definite and leave the

remainder as an exercise. Let u :=

u1
...
un

 ∈ Rn be an arbitrary vector.

Since u2
i ≥ 0 for each 1 ≤ i ≤ n, then we have

u · u =
n∑

i=1

uiui =
n∑

i=1

u2
i ≥ 0.

We can also see that u·u = 0 if and only if ui = 0 for all 1 ≤ i ≤ n.

Remark 2.4.14

More generally, a scalar product on a real vector space V is a
binary operation

〈 , 〉 : V × V R

which satisfies all three properties in Proposition 2.4.13 above.
We will only deal with the Euclidean scalar product on Rn in
this course, but you will see other examples of scalar products in
MATHS 250.

The following inequality involving the Euclidean scalar product will be
useful shortly:
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Theorem 2.4.15: Cauchy-Schwartz inequality

Let u,v ∈ Rn. Then

|u · v|2 ≤ (u · u)(v · v),

and equality holds if and only if u and v are scalar multiples.

Proof. It is an exercise to show the following:

• The theorem is true if u or v is 0.

• If u and v are scalar multiples, then |u · v|2 = (u · u)(v · v).

Thus we will assume for the remainder of this proof that both u and v
are non-zero; further, if equality holds, we only need to prove that u
and v are scalar multiples.

We will use the properties listed in Proposition 2.4.13 without com-
ment. Define the real number λ = (u · v)‖v‖−2; this is allowed, since
v 6= 0 so ‖v‖ 6= 0. Now observe that

0 ≤ ‖u− λv‖2

= (u− λv) · (u− λv)

= u · u− 2λv · u+ λ2v · v
= ‖u‖2 − 2λv · u+ λ2‖v‖2

= ‖u‖2 − 2
1

‖v‖2
(v · u)2 + 1

‖v‖2
(u · v)2

= ‖u‖2 − 1

‖v‖2
(v · u)2

Rearranging, we have the desired inequality. If the inequality is an
equality, we have 0 = ‖u− λv‖2 and so u = λv as desired.
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Remark 2.4.16

While almost all of the linear algebra content in this course works
in the same way for the case of real and complex vectors spaces,
this subsection is an exception! The standard scalar product on
Cn is defined to be the binary function

〈 , 〉 : Cn × Cn C

given by the formula

〈u, v〉 :=
n∑

i=1

uivi = u1 v1 + · · ·+ un vn.

Note that this looks almost the same as in the real case, but we
take the complex conjugate of the first vector.
We will not use complex scalar products in this course, but they
are essential for quantum mechanics and many areas of mathe-
matics.

Euclidean length and distance

The Euclidean dot product on Rn allows us to define the length of a
vector in Rn. Essentially, the formula is just Pythagoras’ Theorem,
generalised to Rn.

Definition 2.4.17

The Euclidean length (or Euclidean norm) on Rn is the func-
tion

‖ ‖ : Rn R

defined by the rule

‖u‖ :=
√
u · u =

√√√√ n∑
i=1

u2
i
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Example 2.4.18

The Euclidean length of the vector

−12
3

 is

∥∥∥∥∥∥
−12

3

∥∥∥∥∥∥ =
√
(−1)2 + 22 + 33 =

√
14.

Armed with the definition of Euclidean length, we easily get the fol-
lowing corollary of the Cauchy-Schwartz inequality:

Corollary 2.4.19

For all u,v ∈ Rn,

(u · v) ≤ ‖u‖‖v‖.

Proof. Take the square root of both sides of the Cauchy-Schwartz in-
equality.

We will use this to prove the triangle inequality below:

Proposition 2.4.20: Properties of length

The Euclidean length satisfies the following properties for all
u,v ∈ Rn and all a ∈ R.

1. Absolutely homogeneous. ‖au‖ = |a|‖u‖

2. Triangle inequality. ‖u+ v‖ ≤ ‖u‖+ ‖v‖

3. Positive definite.

(i) ‖u‖ ≥ 0

(ii) ‖u‖ = 0 =⇒ u = 0

Proof. Let u,v ∈ Rn.

1. Using bilinearity of the dot product, we have

‖au‖2 = (au) · (au) = a2 (u · u) = a2‖u‖2.

We just take the square root to get the desired result.

2.

‖u+ v‖2 = (u+ v) · (u+ v)
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= u · u+ 2u · v + v · v
= ‖u‖2 + 2u · v + ‖v‖2

≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2

= (‖u‖+ ‖v‖)2 ,

where the inequality comes from Corollary 2.4.19.

3. This follows immediately from positive-definiteness of the dot
product.

It is easy to see why the triangle inequality should be true. Consider
Figure 2.8—the triangle inequality simply states that the shortest path
from point A to point B cannot travel via any point C not on the straight
line between them.

A

B

C

v
w

v +w

Figure 2.8: The triangle inequality.

Remark 2.4.21

More generally, a length function (or norm) on a vector space
V is a function

‖ ‖ : V R

which satisfies all three properties in Proposition 2.4.20 above.
We will only deal with the Euclidean length on Rn in this course,
but you will see other examples of length functions in MATHS
254, such as the Manhattan norm.

Armed with the definition of the length of a vector in Rn, we can now
define the distance between two points:

Definition 2.4.22

Given u,v ∈ Rn, the Euclidean distance between u and v is
defined to be

d(u,v) := ‖v − u‖.
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Example 2.4.23

d

([
1
6

]
,

[
4
−1

])
=
√

(4− 1)2 + (−1− 6)2 =
√
58.

Exercise 2.4.24: The midpoint of a segment

Let v,w ∈ R3 with v 6= w. Show that the set of all points
equidistant from v and w forms a plane, and show that this plane
intersects the line joining v and w at a single point, namely 1

2
(v+

w).

Proposition 2.4.25: Properties of distance

The Euclidean distance satisfies the following properties for all
u,v,w ∈ Rn.

1. Symmetry. d(u,v) = d(v,u)

2. Triangle inequality. d(u,w) ≤ d(u,v) + d(v,w)

3. Separation. d(u,v) = 0 ⇐⇒ u = v

Proof. These directly follow from the properties of length proved in
Proposition 2.4.20. We leave the details as an exercise.

Remark 2.4.26

More generally, a distance function (or metric) on a set X is a
binary function

d : X ×X [0,∞)

which satisfies all three properties in Proposition 2.4.25 above.
We will only deal with the Euclidean distance on Rn in this
course, but you will see other examples of distance functions in
MATHS 254, such as the Manhattan metric.

Perpendicular vectors

We will soon use the Euclidean dot product to define the (unsigned)
angle between two vectors in Rn. But first, we will consider the special
case of perpendicular vectors:
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Definition 2.4.27

• We say that two vectors u,v ∈ Rn are orthogonal (or
perpendicular) if u · v = 0.

• We say that two vectors u,v ∈ Rn are orthonormal if
they are orthogonal and both vectors have length 1.

• We say that a subset X ⊆ Rn is orthogonal (respectively,
orthonormal) if each pair of distinct vectors from X is or-
thogonal (respectively, orthonormal).

Example 2.4.28

The standard basis {e1, . . . , en} for Rn is orthonormal since

ei · ej =

{
1 if i = j

0 if i 6= j.

Definition 2.4.29

Let u,v ∈ Rn, where v 6= 0. The orthogonal projection of u
onto v is the unique vector projv u ∈ Rn such that

1. projv u ∈ Span{v}

2. (u− projv u) ⊥ v.

u u

v vPv(u)Pv(u)

Figure 2.9: The orthogonal projection of a vector onto a line.
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Lemma 2.4.30

Let u,v ∈ Rn, where v 6= 0. The orthogonal projection of u
onto v is given by the formula

projv u :=

(
v · u
‖v‖2

)
v.

Proof. We want to find λ ∈ R such that projv(u) = λv and such
that u − projv(u) is orthogonal to v, that is, (u − projv(u)) · v = 0.
Combining these, we have

0 = (u− λv) · v = u · v − λv · v = u · v − λ‖v‖2,

so λ‖v‖2 = u · v and

λ =
u · v
‖v‖2

.

Hence projv(u) = λv =

(
u · v
‖v‖2

)
v.

Example 2.4.31

Find the orthogonal projection of

12
3

 onto

−30
4

.

Solution.

Let u =

12
3

 and v =

−30
4

. We have u·v = 1(−3)+2(0)+3(4) = 9,

while ‖v‖2 = 25 so projv(u) =
9
25
v.

Exercise 2.4.32

Let {b1, . . . ,bn} be an orthogonal basis for Rn. Prove that for
any vector u ∈ Rn we have

u =
n∑

i=1

projbi
u =

n∑
i=1

(
bi · u
‖bi‖2

)
bi.
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Theorem 2.4.33

The vector a =

a1...
an

 is perpendicular to every direction vector

of the hyperplane

S :=


x1

...
xn

 ∈ Rn

∣∣∣∣∣∣∣ a1x1 + · · ·+ anxn + d = 0

.

Further, if v ∈ Rn also has this property, then v = λa for some
λ ∈ R.

Proof. Writing x =

x1
...
xn

 , we have

S = {x ∈ Rn : a · x = −d }.

Now, if v is a direction vector for S, then v = y−x for some x,y ∈ S
and so

a · v = a · (y − x) = a · y − a · x = −d− (−d) = 0.

The second result follows from the observation that the direction vec-
tors of S together with a form a spanning set for Rn (exercise: one
approach is to consider for arbitrary x ∈ V the line through x with di-
rection vector a, and to prove that this line intersects S in some point
via the results in the previous section); we may conclude that there is
a basis for Rn consisting of a together with n − 1 direction vectors
of S, say v1, . . . ,vn−1, and thus by Proposition 2.3.17 we may find
b0, ..., bn−1 ∈ R such that v = b0a+ b1v1 + · · ·+ bn−1vn−1. Now take
the dot product of v and a, and of v and v:

v · a = b0a · a+ b1v1 · a+ · · ·+ bn−1vn−1 · a = b0‖a‖2,
‖v‖2 = v · v = b0a · v + b1v1 · v + · · ·+ bn−1vn−1 · v = b0(a · v);

hence taking the product of the left-hand side of the top equation and the
right-hand side of the bottom equation and setting it equal to the product
of the other two quantities, we have b0(v · a)2 = b0‖a‖2‖v‖2. We now
use the second part of the Cauchy-Schwartz inequality, Theorem 2.4.15,
to conclude that v and a are scalar multiples.
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Note that the set S in Theorem 2.4.33 is defined by a single Cartesian
equation and so it produces a line when n = 2 and a plane when n = 3
(assuming a 6= 0).

We say that a non-zero vector is a normal vector to a line or plane if it
is perpendicular to every direction vector of that line or plane.

Example 2.4.34

Find a Cartesian equation for the plane in R3 that contains the

point

12
3

 and has

29
6

 as a normal vector.

Solution.
A Cartesian equation must be of the form 2x + 9y + 6z + d = 0, by

Theorem 2.4.33. Since the plane must contain the point

12
3

, we have

2(1) + 9(2) + 6(3) + d = 0, so d = −38 and a Cartesian equation is:

2x+ 9y + 6z = 38.

Angles

Definition 2.4.35

Let u,v ∈ Rn \ {0}. We define the (unsigned) angle between u
and v to be

∡(u,v) := arccos

(
u · v
‖u‖‖v‖

)

Example 2.4.36

1. The zero vector is orthogonal to every vector in Rn.

2. Two non-zero vectors are orthogonal if and only if the an-
gle between them is π

2
.

3. Two non-zero vectors point in the same direction if and
only if the angle between them is 0.

4. Two non-zero vectors point in opposite direction if and
only if the angle between them is π.

Notice that if two vectors are linearly dependent, then either their angle
is 0 if they point in the same direction, or π if they point in opposite
directions.
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Recall that two linearly independent vectors, say, u,v ∈ Rn span a
plane in this n-dimensional vector space. Thus, our definition of angle
given above should agree with the usual method of computing angles
in Euclidean plane geometry.

Theorem 2.4.37

Let u and v be non-zero vectors in Rn. Then the formula given in
definition 2.4.35 for calculating the angle between them agrees
with the traditional method of calculating angles in plane geom-
etry.

‖v‖ ‖u‖

‖u− v‖

‖u− v‖ = ‖u‖2 + ‖v‖2 + 2 ‖u‖ ‖v‖ cos θ

θ

Figure 2.10: The angle between two vectors.

Proof. Let θ be the angle between u and v in the plane spanned by
these two vectors—see in Figure 2.10.
In this plane spanned by u and v, standard rules from Euclidean plane
geometry apply.
By the cosine rule, we have

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos(θ).

On the other hand, we have

‖u− v‖2 = (u− v) · (u− v)

= u · (u− v)− v · (u− v)

= u · u− u · v − v · u+ v · v
= ‖u‖2 + ‖v‖2 − 2(u · v).
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It follows that

‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos(θ) = ‖u‖2 + ‖v‖2 − 2(u · v)

and the result follows.

2.5 Linear functions

2.5.1 Linear functions
We now come to one of the most important concepts in linear algebra,
that of a linear function. Given vector spaces U and V , we would like
to pick out the functions from U to V that preserve the addition and
scaling operations. This is made precise in the following definition:

Definition 2.5.1

Let U and V be R-vector spaces. A function L : U → V is said
to be linear if for every u1,u2 ∈ U and c ∈ R, it satisfies the
following properties:

1. Additive. L(u1 + u2) = L(u1) + L(u2),
2. Homogeneous. L(cu1) = c L(u1).

Linear functions are also commonly called linear transformations or
linear maps—these terms are synonymous. They can equivalently be
characterised as functions which preserve linear combinations, in the
following sense:

Exercise 2.5.2

Prove that a function L : U → V is linear if and only if

L

(
k∑

i=1

ciui

)
=

k∑
i=1

ciL(ui)

for all ui ∈ U and all scalars ci (1 ≤ i ≤ k).

It is easy to see that a linear function always sends the zero vector in
the domain to the zero vector in the codomain:

Proposition 2.5.3

Let U and V be vector spaces. If L : U → V is a linear transfor-
mation then L(0) = 0.

Proof. L(0) = L(00) = 0L(0) = 0.
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If you are unsure about whether or not a function f : U → V is linear,
the first thing you should check is if it preserves the zero vector, i.e.,
check if f(0) = 0. If it fails this test, then by Proposition 2.5.3 you
immediately discover that f cannot be linear. Note that the converse of
this proposition is false! You cannot conclude that a function is linear
just from checking that it preserves the origin. For instance, the func-
tion g in the upcoming example below preserves the origin but fails to
be linear.
More generally, linear transformations must preserve linear subspaces:

Proposition 2.5.4

Let L : U → V be a linear function. If S ⊆ U is a linear
subspace, then its image L(S) ⊆ V is a linear subspace.

Proof. We leave this as a straightforward exercise.
(Hint: recall Definition 1.4.9, and Proposition 2.2.11.)

Example 2.5.5

Which of the following functions are linear?

1. f : R2 → R

f

([
x
y

])
:=
[
x+ y

]
.

2. g : R2 → R

g

([
x
y

])
:=
[
xy
]
.

3. h : R→ R
h(x) := x+ 1.

Solution. 1. We show that f is a linear transformation.

Let v =

[
v1
v2

]
,w =

[
w1

w2

]
∈ R2 and c ∈ R. We have

f(v +w) = f

([
v1
v2

]
+

[
w1

w2

])
= f

([
v1 + w1

v2 + w2

])
=
[
v1 + w1 + v2 + w2

]
=
[
v1 + v2

]
+
[
w1 + w2

]
= f

([
v1
v2

])
+ f

([
w1

w2

])
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= f(v) + f(w)

and

f(cv) = f

(
c

[
v1
v2

])
= f

([
c v1
c v2

])
=
[
c v1 + c v2

]
= c

[
v1 + v2

]
= c f

([
v1
v2

])
= c f(v).

It follows that f is a linear transformation.

2. Although g(0) = 0, the function g is not a linear transformation
because, for example,

2g

([
1
1

])
= 2

[
1
]
=
[
2
]

whereas

g

(
2

[
1
1

])
= g

([
2
2

])
=
[
4
]
.

3. h(0) = 1 6= 0 so h cannot be linear.
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Exercise 2.5.6

For each of the following functions, determine whether or not it
is linear

1. exp : R R
x ex

2. R R
x ax+ b

a, b ∈ R

3.
µ : R2 R[

x
y

]
xy

4.
Rθ : R2 R2[

x
y

] [
x cos θ − y sin θ
x sin θ + y cos θ

] θ ∈ R

5. ‖ ‖ : Rn → R.

6. projv : Rn Rn

u v·u
∥v∥2v

v ∈ Rn \ {0}

7. evala : R[x] R
p(x) p(a)

a ∈ R

In the case of functions between 1-dimensional vector spaces, it is easy
to describe all possible linear transformations:

Example 2.5.7

Let f : R → R. Show that f is a linear transformation if and
only if there exists a scalar a ∈ R such that f(x) = ax, for all
x ∈ R.

Solution.
We first assume that f is a linear transformation. Let a = f(1). Now,
since f is a linear transformation, f(x) = f(x 1) = x f(1) = x a, for
all x ∈ R. The converse is easy to check.



2.5. LINEAR FUNCTIONS 117

Remark 2.5.8

It is possible that, in a previous course, you were taught that if
f : R→ R is given by f(x) = a x + b, then it is linear. In more
advanced mathematics courses, such functions are usually called
affine transformations, with the name “linear” reserved for the
case b = 0. (So linear transformations are special cases of affine
transformations.)

Definition 2.5.9

Given R-vector spaces U and V , we will denote the subset of all
linear functions from U to V by Lin(U, V ).

Given vector spaces U and V , recall from Example 2.2.9 that the set
V U of all functions from U to V is a vector space. It turns out that the
subset Lin(U, V ) ⊆ V U is a linear subspace. In other words, scaling a
linear function or adding together two linear functions produces another
linear function!

Proposition 2.5.10

For any R-vector spaces U and V , Lin(U, V ) is a linear subspace
of V U .

Proof. Let L, T ∈ Lin(U, V ), u1,u2 ∈ U , and let c be a scalar. We just
verify the criteria in Proposition 2.2.11:

• The zero function is linear:

0(u1 + u2) = 0 = 0+ 0 = 0(u1) + 0(u2),

0(cu1) = 0 = c0 = c0(u1).

• Sums of linear functions are linear:

(L+ T )(u1 + u2) = L(u1 + u2) + T (u1 + u2)

= L(u1) + L(u2) + T (u1) + T (u2)

= (L+ T )(u1) + (L+ T )(u2)

(L+ T )(cu1) = L(cu1) + T (cu1),

= cL(u1) + cT (u1)

= c(L(u1) + T (u1))

= c(L+ T )(u1).

• Scalar multiples of linear functions are linear. We leave this ver-
ification to the reader.
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In other words, a linear combination of linear transformations is again
a linear transformation. But it gets even better: it turns out that a com-
posite of linear transformations is linear as well!

Proposition 2.5.11

Let U , V , and W be R-vector spaces. Then the following hold:

1. The identity function idU : U → U is linear.

2. If L : U → V and T : V → W are linear, then the
composite T ◦ L : U → W is linear.

Proof. Let u,u1,u2 ∈ U , and let c be a scalar.

1. We verify that idU : U → U is linear:

idU(u1 + u2) = u1 + u2 = idU(u1) + idU(u2),

idU(cu) = cu = cidU(u).

2. Suppose that L : U → V and T : V → W are linear. We verify
that the composite T ◦ L : U → W is linear:

T (L(u1 + u2)) = T (L(u1) + L(u2)) = T (L(u1)) + T (L(u2)),

T (L(cu)) = T (cL(u)) = cT (L(u)).

Remark 2.5.12

For the curious student, Proposition 2.5.11 states that the col-
lection of all possible R-vector spaces and linear functions be-
tween them is an example of an algebraic structure called a cate-
gory. Category theory is typically introduced in more advanced
abstract algebra and topology courses.

2.5.2 Linear extension

In general, to define a function, one needs to state its domain, its codomain,
and a “rule” assigning to each element in the domain an element in the
codomain. But what if we only know the rule for a proper subset of
the domain: can we figure out what the function does to the rest of its
domain?
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Example 2.5.13

Suppose that f : R → R is a function for which we know that
f(x) = 0 for any x ∈ Q. Can we determine the output value
f
(√

2
)
?

Solution.
No! There are infinitely many possibilities for what f

(√
2
)

could be,
and we lack the information to decide. For instance, it could be the case
that f = 0 (the zero function), in which case f(

√
2) = 0. Alternatively,

it could be the case that f is actually the characteristic function (also
known as the indicator function) of the irrational numbers, which is
given by the rule:

χR\Q :=

{
1 if x ∈ R \Q
0 if x ∈ Q.

Thus, we see that for a general function, knowing its rule only for a
proper subset of the domain does not allow us to recover its rule for the
entire domain. In the special case of linear functions, we can do much
better!

Example 2.5.14

Consider the subset

B :=

{[
1
1

]
,

[
1
2

]}
⊂ R2.

Suppose that L : R2 → R3 is a linear function which satisfies

L

([
1
1

])
=

 2
0
−2

 , L

([
1
2

])
=

02
0

 .

Given an arbitrary vector
[
x
y

]
∈ R2, can we find the output vec-

tor L
([

x
y

])
?

Solution.
Let’s try to express

[
x
y

]
∈ R2 as a linear combination of the vectors in

the subset B. To do this, we need to solve the linear system

c1

[
1
1

]
+ c2

[
1
2

]
=

[
x
y

]
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for the scalars c1 and c2. We row-reduce the corresponding augmented
matrix: [

1 1 x
1 2 y

]
∼
[
1 0 2x− y
0 1 −x+ y

]
.

Thus, we find that the vector
[
x
y

]
can be expressed uniquely as a linear

combinator of the vectors in B, namely[
x
y

]
= (2x− y)

[
1
1

]
+ (−x+ y)

[
1
2

]
,

Note that Corollary 2.3.17 tells us that B is a basis. Because we know
that L is linear, we must have

L

([
x
y

])
= L

(
(2x− y)

[
1
1

]
+ (−x+ y)

[
1
2

])
= (2x− y)L

([
1
1

])
+ (−x+ y)L

([
1
2

])

= (2x− y)

 2
0
−2

+ (−x+ y)

02
0


=

 4x− 2y
−2x+ 2y
−4x+ 2y

 .

From the above example, you might (correctly) guess that the rule for a
linear function is completely determined by what the function does to a
basis for its domain. Indeed, we will show this in the proof of Theorem
2.5.17. First, we need to prove the following Lemma:

Lemma 2.5.15

Let L, T : U → V be linear functions, and let X ⊆ U be a subset
such that SpanX = U . Then

L(x) = T (x) for all x ∈ X =⇒ L = T.

Proof. Suppose that L(x) = T (x) for all x ∈ X . Let u ∈ U be
arbitrary. Since U = SpanX then we can write

u =
k∑

i=1

cixi

for some scalars ci and some vectors xi ∈ X . Using the fact the L and
T are linear and agree on X , we see that

L(u) = L

(
k∑

i=1

cixi

)



2.5. LINEAR FUNCTIONS 121

=

(
k∑

i=1

ciL(xi)

)

=

(
k∑

i=1

ciT (xi)

)

= T

(
k∑

i=1

cixi

)
= T (u).

In other words, Lemma 2.5.15 states that for any two linear functions
with the same domain and codomain, if they agree on a spanning set for
their domain, then in fact the two linear functions must be the equal!

Definition 2.5.16

Let U and V be R-vector spaces, and let X ⊆ U be a subset.
Given a function f : X → V , a linear extension of f is a linear
function F : U → V which satisfies

F (x) = f(x)

for all x ∈ X .

If X is an arbitrary subset of the domain, a linear extension of f : X →
V may not exist, or may not be unique. However, in the special case
where X is a basis for the domain, then we can always construct a linear
extension F : U → V and there is only one way to do so!

Theorem 2.5.17

Let U and V be R-vector spaces, and B ⊆ U be a basis. Given
a function f : B → V , there exists a unique linear extension
F : U → V .

Proof. Since B is a basis, then by Corollary 2.3.17, each u ∈ U can be
written uniquely as a linear combination of the basis vectors

u =
n∑

i=1

cibi,

where the ci ∈ R are scalars uniquely determined by u. Since we want
F : U → V to be linear and for it to agree with f on the basis B, it
must satisfy the following equalities:

F (u) = F

(
n∑

i=1

cibi

)
=

n∑
i=1

ciF (bi) =
n∑

i=1

cif(bi).
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This tells us that we should define our linear extension F : U → V by
the rule

F (u) :=
n∑

i=1

cif(bi).

Now that we have a candidate F for the linear extension of f , we should
check that it is indeed linear. Given another vector u′ ∈ U , we can
express it uniquely as a linear combination of the basis B by Corollary
2.3.17:

u′ =
n∑

i=1

c′ibi.

We can see that F is additive:

F (u+ u′) = F

(
n∑

i=1

cibi +
n∑

i=1

c′ibi

)

= F

(
n∑

i=1

(ci + c′i)bi

)

=
n∑

i=1

(ci + c′i)f(bi)

=
n∑

i=1

cif(bi) +
n∑

i=1

c′if(bi)

= F (u) + F (u′).

We leave it as an exercise to check that F is homogeneous.

To finish the proof, we apply Lemma 2.5.15 to conclude that the func-
tion F : U → V we have constructed is indeed the unique linear exten-
sion of the given function f : B → V .

Theorem 2.5.17 is one of the most useful results in MATHS 120. Let’s
demonstrate this by finding a formula for any rotation (about the origin)
in the plane R2. To help us with this, we need the Mazur-Ulam The-
orem. You do not need to memorize this Theorem for the exam—it is
only stated here to help us with the subsequent example.



2.5. LINEAR FUNCTIONS 123

Theorem 2.5.18: Mazur-Ulam

Let f : Rn → Rn be a function such that

dist (f(x), f(y)) = dist (x,y) for all x,y ∈ Rn.

Then there exists a linear function L : Rn → Rn such that

f(x) = L(x) + f(0) for all x ∈ Rn.

Moreover, L has the property

〈Lx, Ly〉 = 〈x,y〉 for all x,y ∈ Rn,

Proof. Given such a distance-preserving function f , just define

L(x) := f(x)− f(0).

We still need to verify that L is linear and that L preserves the Euclidean
scalar product—you’ll see the rest of the proof in MATHS 254.

Example 2.5.19

Let Rθ : R2 → R2 be the function which rotates the plane coun-
terclockwise about the origin through an angle θ. Find an explicit

formula for Rθ

([
x
y

])
, where

[
x
y

]
∈ R2 is arbitrary.

Solution.
The origin is fixed by this rotation, and rotating a vector does not change
its length. In other words,

Rθ(0) = 0,

dist(Rθu, Rθv) = dist(u,v).

Thus, the Mazur-Ulam Theorem 2.5.18 tells us that Rθ must be a linear
function! In order to apply Theorem 2.5.17, we first need to describe
how the standard ordered basis (e1, e2) of R2 is transformed by Rθ.
With some straightforward secondary school trigonometry, we see that

Rθ(e1) =

[
cos θ
sin θ

]
.

Similarly,

Rθ(e2) =

[
cos(θ + π

2
)

sin(θ + π
2
)

]
=

[
− sin θ
cos θ

]
.



124 LINEAR ALGEBRA

Thus, we get the desired formula:

Rθ

([
x
y

])
= Rθ (xe1 + ye2)

= xRθ(e1) + yRθ(e2)

= x

[
cos θ
sin θ

]
+ y

[
− sin θ
cos θ

]
=

[
x cos θ − y sin θ
x sin θ + y cos θ

]
.

2.6 Matrices

2.6.1 Basic definitions

Definition 2.6.1

Let m,n ∈ N. A matrix of shape m×n is an array with m rows
and n columns

A :=


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn


where the aij ∈ R are the entries of the matrix.

• The ith row of A is

rowi(A) :=
[
ai1 · · · ain

]
• The jth column of A is

colj(A) :=

a1j...
amj


• We sometimes write Matm×n(R) for the set of all m × n

matrices with entries from R.

More generally, the entries of a matrix can be integers, complex num-
bers, or more exotic numbers. In MATHS 120, the entries are real,
unless otherwise specified. We will occasionally also use complex ma-
trices in examples.
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Definition 2.6.2

• We call a matrix v ∈ Matm×1(R) = Rm a column vector,
and we write

v =

v1...
vm


• We call a matrix φ ∈ Mat1×n(R) a row vector, and we

write
φ =

[
φ1 · · · φn

]
.

Example 2.6.3

•

1 0 4
1 2 0
3 4 −1

 is a 3× 3 matrix.

•
[
3 1 −2

]
is a 1× 3 matrix—a row vector.

•


2
1
0
3

 is a 4× 1 matrix—a column vector.

Definition 2.6.4

Two matrices A and B are equal if they have the same shape,
say, m×n and each of their corresponding entries are equal, i.e.,
aij = bij for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n.

2.6.2 The standard matrix of a linear function

By Theorem 2.5.17, we know that a linear function is uniquely deter-
mined by what it does to a basis. Thus, given a choice of ordered basis
for the domain and codomain we can neatly encode any linear function
between finite-dimensional vector spaces by a matrix.

In this course, we will only do this for linear functions L : Rn →
Rm, and we will only find the corresponding matrix with respect to the
standard ordered bases on the domain and codomain. See MATHS 250
and MATHS 253 for the general case.
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Definition 2.6.5

The standard matrix of a linear function L : Rn → Rm is
defined to be the m× n matrix[

L
]
:=
[
L(e1) L(e2) · · · L(en)

]
where (e1, . . . , en) is the standard ordered basis of Rn.

In other words, the jth column of the standard matrix [L] tells us what
the linear function L : Rn → Rm does to the jth standard basis vector,
i.e.,

colj[L] = L(ej).

As we have seen, this data completely determines the linear function L.

Remark 2.6.6

We can think of the standard matrix construction as function[ ]
: Lin(Rn,Rm) Matm×n(R)

L
[
L
]

which accepts a linear function L : Rn → Rm and returns an
m× n matrix [L].

Remark 2.6.7

We can be more general and construct the matrix associated to
L : Rn → Rm with respect to an ordered basis B of Rn and
another ordered basis B′ of Rm. The entries for the jth column
are then coefficients that uniquely determine F (bj) with respect
to the ordered basis vectors in B′. We will not consider such
matrices in MATHS 120.

Example 2.6.8

Let Rθ : R2 → R2 be the linear function which rotates the plane
counterclockwise about the origin through an angle θ. Find its
standard matrix.

Solution.
From Example 2.5.19, we immediately get the standard rotation matrix

[
Rθ

]
=

[
cos θ − sin θ
sin θ cos θ

]
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The set of all such rotation matrices

SO(2) :=

{[
cos θ − sin θ
sin θ cos θ

] ∣∣∣∣ θ ∈ R
}

is called the rotation group or the special orthogonal group in di-
mension 2. You will encounter this group again in MATHS 254 and in
more advanced physics courses.

Example 2.6.9

Find the standard matrix of the linear function

L : R3 R2xy
z

 [
x− 2y + z
2x− 3z

]

Solution.
Method 1: We just apply Definition 2.6.5 directly:

[
L
]
=
[
Le1 Le2 Le3

]
=

[
1 −2 1
2 0 −3

]
.

Method 2: We can break up the output vector:

L

xy
z

 =

[
x− 2y + z
2x− 3z

]
= x

[
1
2

]
+ y

[
−2
0

]
+ z

[
1
−3

]
.

On the other hand, by linearity we must have

L

xy
z

 = L (xe1 + ye2 + ze3) = xLe1 + yLe2 + zLe3.

Comparing these two expressions tells us that the standard matrix must
be [

L
]
=
[
Le1 Le2 Le3

]
=

[
1 −2 1
2 0 −3

]
.
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Exercise 2.6.10

In each case, decide whether the function is uniquely defined as
a linear transformation on its domain; if so, find the standard
matrix of the function.

1. f : R3 → R with

f

10
1

 = 1, f

12
3

 = 3, and f

22
4

 = 4

2. g : R3 → R with

g

10
1

 = 1, g

12
3

 = 3, and g

22
4

 = −4

3. h : R2 → R2 with h(e1+e2) = e1 and h(e1−e2) = −e1

4. k : R2 → R with k

([
17
1

])
= 17 and k

([
16
2

])
= 16

Exercise 2.6.11

Let F : R2 → R3 be a linear function which has the following
standard matrix 1 2

3 4
5 6

 ,

what is the output vector F (e1 + e2)?

2.6.3 The linear function determined by a matrix
We have just seen that we can encode a linear function L : Rn → Rm

by its standard m × n matrix [F ]. But what if we want to reverse this
process? In other words, given a matrix A ∈ Matm×n(R), we would
like to think of it as being the standard matrix of some linear function
TA : Rn → Rm. In other words, we want to have the equality[

TA(e1) TA(e2) · · · TA(en)
]
= A.

In order to try to find the rule TA(x) for this desired linear function,
we just follow the same reasoning that we previously used to invent the
standard matrix. Indeed, since we want TA to be linear, then for any
x ∈ Rn we must have

TA(x) = TA(x1e1 + · · ·+ xnen)

= x1TA(e1) + · · ·+ xnTA(en)

= x1 col1(A) + · · ·+ xn coln(A).
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Thus, we arrive at the following method to obtain a linear function from
a matrix:

Definition 2.6.12

Given a matrix A ∈ Matm×n(R), we define its corresponding
linear function by the rule

TA : Rn Rm

x x1 col1(A) + · · ·+ xn coln(A).

See Remark 2.6.26 for a more concise way to write the rule for TA.

Exercise 2.6.13

Given a matrix A ∈ Matm×n(R), prove that the corresponding
function TA : Rn → Rm is indeed linear.

Remark 2.6.14

We have described a process for turning a matrix A ∈
Matm×n(R) into a linear transformation TA : Rn → Rm. We
can think of this process as a function:

T( ) : Matm×n(R) Lin(Rn,Rm)

A TA.

Example 2.6.15

Suppose that A :=

[
0 1 3
2 4 4

]
is the standard matrix of a (real)

linear transformation TA.

1. What are the domain and codomain of TA?

2. Give a formula for TA(x), where x is an arbitary vector in
the domain.

Solution. 1. Because A is a 2×3 matrix then we have TA : R3 → R2.

2. For any x ∈ Rn we have

TA(x) = x1 col1(A) + x2 col2(A) + x3 col3(A)

= x1

[
0
2

]
+ x2

[
1
4

]
+ x3

[
3
4

]
=

[
x2 + 3x3

2x1 + 4x2 + 4x3

]
.
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For convenience, we state the following obvious proposition. This
makes clear that that the standard matrix construction and the construc-
tion of a linear function from a matrix are inverse to one another—we
chose our constructions precisely so that this would be the case.

Proposition 2.6.16

Let L : Rn → Rm be a linear function and let A ∈ Matm×n(R).
Then we have

[TA] = A and T[L] = L.

2.6.4 Addition and scaling of matrices

As we have seen in Section 2.6.2, a linear function F : Rn → Rm can
be neatly encoded by its m × n standard matrix [F ]. Using operations
such as addition, scaling, and composition that we already know how
to perform on linear functions, we would like to define corresponding
operations on matrices.

Let’s start by thinking about addition. Given linear functions F, G :
Rn → Rm, let’s apply the standard matrix construction given in Defini-
tion 2.6.5 to their sum F +G : Rn → Rm.[

F +G
]
=
[
(F +G)(e1) · · · (F +G)(en)

]
=
[
F (e1) +G(e1) · · · F (en) +G(en)

]
.

We want to be able to write

[F +G] = [F ] + [G]

and so our calculation above tells us that we need to make the following
definition:

Definition 2.6.17

Given matrices A,B ∈ Matm×n(R), then their sum A+B is the
m× n matrix defined entrywise by

(A+B)ij := aij + bij.

In other words, to get the entry in the ith row and jth column of A+B,
we simply add the corresponding entries from A and B. Warning: as
expected from our discussion above, if A and B have different shapes
then it is not possible to add them!
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Example 2.6.18

If possible, calculate the sums of the following matrices.

(i)
[
1 2 3
4 5 6

]
+

[
1 0 1
−3 1 0

]
;

(ii)
[
1 2 3
4 0 1

]
+

[
2 1
4 6

]
.

Solution. (i)
[
1 2 3
4 5 6

]
+

[
1 0 1
−3 1 0

]
=

[
2 2 4
1 6 6

]
.

(ii) These matrices cannot be added as they have different shapes.

Definition 2.6.19

For m,n ∈ N, the zero matrix Om×n is the m × n matrix with
every entry equal to 0.

If the dimension is clear from the context, we often simply write O,
instead of Om×n.

Let’s now turn our attention to defining a scaling operation on matrices.
Given a linear function L : Rn → Rm and a scalar c ∈ R, let’s apply
the standard matrix construction given in Definition 2.6.5 to the scaled
linear function cL : Rn → Rm.[

cL
]
=
[
(cL)(e1) · · · (cL)(en)

]
=
[
c(L(e1)) · · · c(L(en))

]
We want to be able to write

[cL] = c[L],

and so our calculation above tells us that we need to make the following
definition:

Definition 2.6.20

Given an m × n matrix A and a scalar c, then the scaled matrix
cA is the m× n matrix defined entrywise by

(cA)ij := caij.

In other words, we simply multiply each entry by c.
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Example 2.6.21

Calculate the following.

(i) 5

[
3 2
1 0

]
;

(ii) −1
[
3 1 0
2 −1 −2

]
.

Solution.

(i) 5

[
3 2
1 0

]
=

[
15 10
5 0

]
.

(ii) −1
[
3 1 0
2 −1 −2

]
=

[
−3 −1 0
−2 1 2

]
.

By Proposition 2.5.10, we know that the set Lin(Rn,Rm) of linear func-
tions from Rn to Rm is a vector space. Since we have defined addition
and scaling of matrices precisely so that these operations would agree
with the corresponding operations on linear functions, it should be no
surprise that the set Matm×n(R) of all m× n matrices also satisfies the
axioms of a vector space!

Theorem 2.6.22

With addition and scalar multiplication defined as above, and the
zero matrix playing the role of the zero vector, the set of all m×n
matrices Matm×n(R) is an R-vector space.

Proof. We need to verify the axioms in Definition 2.2.7. This is easy
but repetitive, so we leave most of this to the reader. But for demon-
stration, let’s just check that the zero matrix behaves as required.

Given any m× n matrix A, then

(A+Om×n)ij = aij + (Om×n)ij = aij + 0 = aij,

so indeed A+Om×n = A = Om×n + A.

The result below immediately follows:
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Corollary 2.6.23

For all m,n ∈ N, the standard matrix construction[ ]
: Lin(Rn,Rm) Matm×n(R)

F
[
F
] (2.1)

is linear. In other words, for all linear functions F,G : Rn → Rm

and all scalars c ∈ R, we have the following equalities:

1.
[
F +G

]
=
[
F
]
+
[
G
]

2.
[
cF
]
= c

[
F
]
.

Proof. This follows immediately from Theorem 2.6.22 and the defini-
tions we chose for matrix addition and scalar multiplication.

Corollary 2.6.24

For any m,n ∈ N, the construction

T( ) : Matm×n(R) Lin(Rn,Rm)

A TA.

is linear. In other words, for all matrices A,B ∈ Matm×n(R)
and all scalars c ∈ R, we have the following equalities:

1. TA+B = TA + TB

2. TcA = cTA

Proof. We could check this directly using Definition 2.6.12.
Alternatively, we can come back to this once we have proven Theorem
2.7.14. In this case, we apply it together with Proposition 2.6.16 and
Corollary 2.6.23.

2.6.5 Matrix multiplication

It would be nice if we have a rule for multiplying an m × n matrix A
and a column vector x ∈ Rn so that

Ax = TA(x).

Looking at Definition 2.6.12, we see exactly what we need to do:
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Definition 2.6.25

let A be an m × n matrix, and x ∈ Rn. We define the product
Ax ∈ Rm by the rule

Ax :=
n∑

j=1

xj colj(A) = x1 col1(A) + · · ·+ xn coln(A).

Remark 2.6.26

Thanks to this matrix multiplication rule, we can now express the
formula appearing in Definition 2.6.12 in a more concise way.
Namely, for any A ∈ Matm×n(R) and x ∈ Rn we have

TA(x) = Ax.

Given a pair of matrices A ∈ Matm×n(R) and B ∈ Matr×s(R), Defi-
nition 2.6.12 allows us to construct the corresponding linear functions
TA : Rn → Rm and TB : Rs → Rr. If s = m then we can construct the
composite function

Rn Rm Rr

x TA(x) TB(TA(x))

Ax TB(Ax)

B(Ax)

TA

TB◦TA

TB

The equalities in this diagram just follow from Definition 2.6.25. Since
the composite function TB ◦ TA : Rn → Rr is linear by Proposi-
tion 2.5.11, then we can construct its standard m× r matrix

[
TB ◦ TA

]
.

From the diagram above, we see that this standard matrix can be ex-
pressed as follows:[

TB ◦ TA

]
=
[
TB(TA(e1)) TB(TA(e2)) · · · TB(TA(en))

]
=
[
B(A(e1)) B(A(e2)) · · · B(A(en))

]
=
[
B col1(A) B col2(A) · · · B coln(A)

]
.

From this, we can now see how we should define the rule for multiply-
ing matrices so that

BA =
[
TB ◦ TA

]
.

In other words, we want our to write our rule for matrix multiplication
so that the matrix product corresponds to function composition.
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Definition 2.6.27

Given matrices A ∈ Matm×n(R) and B ∈ Matr×m(R), we de-
fine the product

BA :=
[
B col1(A) B col2(A) · · · B coln(A)

]
,

where colj(A) is the jth column of A. This matrix multiplication
operation can be viewed as a function:

Matr×m(R)×Matm×n(R) Matr×n(R)

(B,A) BA

Note that the rule given in the definition above generalizes—and re-
lies upon—the matrix multiplication rule previously given in Definition
2.6.25, since it involves multiplying each of the columns of A on the left
by B.
We also emphasize that this matrix multiplication operation is only de-
fined if the matrices involved have the correct shapes. The following
memory aid should you remember the correct shape of the product:

(m× n) · (n︸ ︷︷ ︸
cancel

×r) = (m× r).

Example 2.6.28

(i)
[
1 −1 2
4 0 −1

] 1
0
−1

 =

[
−1
5

]
.

(ii)
[

1 −2 5
−3 6 −15

]−3 −11 2
1 1

 =

[
0 0
0 0

]
.

(iii)
[
1 2 3 4

] 
2
1
0
1

 =
[
8
]
.

(iv)
[
2 3
1 0

]3 2 1
1 1 1
0 1 2

 is not defined, because the first matrix

is 2× 2 while the second is 3× 3.

In practice one often uses the following formulas to perform matrix
multiplication. These are easier to compute with, but don’t provide
quite the same insight as our definition.
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Proposition 2.6.29

Let B ∈ Matr×m(R), A ∈ Matm×n(R), φ ∈ Mat1×n(R), x ∈
Rn. Then

1. φx =
∑n

k=1 φkxk = φ1x1 + · · ·+ φnxn

2. Ax =

 row1(A)x
...

rowm(A)x

 =

 a11x1 + · · ·+ a1nxn
...

am1x1 + · · ·+ amnxn



3. BA =

row1(B) col1(A) · · · row1(B) coln(A)
... . . . ...

rowr(B) col1(A) · · · rowr(B) coln(A)



Proof. Exercise.

Remark 2.6.30

Part 3 of Proposition 2.6.29 gives us a formula for the entries of
the product BA. In particular, for each 1 ≤ i ≤ r, 1 ≤ j ≤ n,
we have

(BA)ij = rowi(B) colj(A) =
m∑
k=1

bikakj.

Another way to look at this formula is that the entry (BA)ij of
the product matrix is just the scalar product of the ith row of B
with the jth column of A.
If you are familiar with MATLAB, we encourage you to try to
write your own matrix multiplication function using this for-
mula!

For your convenience, we now summarize the desired relationship be-
tween matrix multiplication and composition of linear functions:
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Theorem 2.6.31

Let F : Rn → Rm and G : Rm → Rr be linear functions,
let A ∈ Matm×n(R), B ∈ Matr×m(R), and let x ∈ Rn. The
following hold:

1. [F ]x = F (x)

2. TA(x) = Ax

3.
[
G ◦ F

]
=
[
G
] [

F
]

4. TB ◦ TA = TBA

Proof. These equalities all hold because we chose the definition of ma-
trix multiplication precisely so that they would!

Recall that the identity function idRn : Rn → Rn is linear by Proposi-
tion 2.5.11, and therefore we can construct its standard matrix as fol-
lows: [

idRn

]
=
[
idRn(e1) · · · idRn(en)

]
=
[
e1 · · · en

]
.

This matrix has 1’s on the diagonal, and 0’s everywhere else, and we
give it the following special name:

Definition 2.6.32

For each n ∈ N, the n×n identity matrix In is the n×n matrix
defined by

(In)ij :=

{
1 if i = j;
0 if i 6= j.

For example,

I3 =

1 0 0
0 1 0
0 0 1

.
If the dimension n is clear from the context, we sometimes simply write
I , instead of In.

Just as the zero matrix On,m is called an additive identity, the identity
matrix In is called a multiplicative identity.

Taking advantage of the correspondence we have established between
linear functions and matrices, we immediately get the following prop-
erties of matrix multiplication:
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Corollary 2.6.33

Let E ∈ Mats×r(R), C,D ∈ Matr×m(R), A,B ∈ Matm×n(R),
c ∈ R. The following hold:

1. Distributive law:

• C(A+B) = CA+ CB

• (C +D)A = CA+DA

2. Homogeneous: C(cA) = c(CA) = (cC)A

3. Associative law: (EC)A = E(CA)

4. Existence of multiplicative identities:

• ImA = A

• AIn = A

5. Products with zero matrices:

• 0r×mA = 0r×n

• C0m×n = 0r×n

Proof. We just take advantage of Theorem 2.6.31, which establishes the
correspondence between linear function composition and matrix mul-
tiplication. Then these properties all follow from the corresponding
properties for linear transformations.
Alternatively, we can prove these properties directly using the defini-
tion of matrix multiplication or one of the formulas given in Proposi-
tion 2.6.29 .

Warning.
If a, b ∈ R, then we have the very important property:

ab = 0⇐⇒ a = 0 or b = 0.

The analogous property (which would, in some sense, does not hold
for matrices. In other words, we may find that AB is a zero matrix
even if neither A nor B is a zero matrix: for an example, see part (ii) of
Example 2.6.28.
We also note that matrix multiplication is not necessarily commuta-
tive (that is, the order of operation is important). For example, if A =[
1 1
0 1

]
and B =

[
2 0
2 2

]
, then

AB =

[
1 1
0 1

] [
2 0
2 2

]
=

[
4 2
2 2

]
,
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while

BA =

[
2 0
2 2

] [
1 1
0 1

]
=

[
2 2
2 4

]
.

Definition 2.6.34: Power of a matrix

Let A be an n × n matrix. We define the kth power of Ak for
k ∈ N inductively in the following way:

A0 = In,

A1 = A,

Ak = A(Ak−1).

Exercise 2.6.35

For every positive integer n, consider the matrix

Rn =

[
cos 2π

n
sin 2π

n

− sin 2π
n

cos 2π
n

]
.

Show that Rn
n = I2.

Let us now end this section with the observation that a system of linear
equations may be written in matrix form.
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Example 2.6.36

The linear system of equations

x+ y + z = 3

x + z = 2

3x+ 2y = 0

x+ 2y + z = 1

can be written as 
1 1 1
1 0 1
3 2 0
1 2 1


xy
z

 =


3
2
0
1


or, in other words,

Ax = b

where A =


1 1 1
1 0 1
3 2 0
1 2 1

, x =

xy
z

 and b =


3
2
0
1

.

We will return to this idea later, after learning about matrix inverses.

Exercise 2.6.37

Find all vectors x ∈ R4 such that
3 4 6 −3
2 1 5 4
0 0 1 4
0 0 −3 2

x = −x.
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Exercise 2.6.38

Let Ax = b be a system of linear equations in n variables with
b 6= 0 and x the vector of unknowns; let S be the set of solutions
to this system. Suppose S 6= ∅ and x0 ∈ S is a solution to the
system.

1. Let v ∈ Rn be a solution to the homogeneous system
Av = 0. Show that x0 + v ∈ S.

2. Suppose that x1 ∈ S. Show that (x1−x0) is a solution to
the homogeneous system Ax = 0.

3. Let H be the set of solutions to the homogeneous system
Ax = 0, and define a set S ′ by

S ′ := {x0 + v | v ∈ H }.

Use part (1) to show that S ′ ⊆ S. Use part (2) to show that
S ⊆ S ′. Conclude that S ′ = S.

We have shown that the set of all solutions to the original system
can be found by first finding a single solution x0, then finding
all the solutions to the homogeneous system with the same co-
efficient matrix, and finally taking the sums of x0 with all the
homogeneous solutions.

Exercise 2.6.39

It turns out that we can represent a complex number z = a + bi
by the 2× 2 real matrix

Z =

[
a −b
b a

]
.

Given another complex number w = c + di, let’s denote its cor-
responding matrix representation by W . Prove that

(a) The matrix Z +W represents the complex number z + w;

(b) The matrix ZW represents the complex number zw.

In maths jargon, we say that the field C is isomorphic to the set
of matrices {[

a −b
b a

] ∣∣∣∣ a, b ∈ R
}

together with the operations of matrix addition and multiplica-
tion.
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2.6.6 Transpose of a matrix

Definition 2.6.40

If A is an m× n matrix then the transpose of A, denoted A⊤, is
the n×m matrix defined by (A⊤)ij = aji.

In other words, the rows of A⊤ are the columns of A and vice versa.

Example 2.6.41

The transpose of
[
1 2 3
4 5 6

]⊤
=

1 4
2 5
3 6

, and
[
1 2 3

]⊤
=12

3

.

Theorem 2.6.42: Properties of the transpose

Let A and B be m× n matrices, let C be a r ×m matrix, and k
a scalar. Then

(i) rowi(A
⊤) = coli(A)

⊤ 1 ≤ i ≤ n

(ii) colj(A
⊤) = rowj(A)

⊤ 1 ≤ j ≤ m

(iii)
(
A⊤)⊤ = A.

(iv) Transposing is linear, i.e.,

• (A+B)⊤ = A⊤ +B⊤;

• (kA)⊤ = kA⊤.

(v) (CA)⊤ = A⊤C⊤

Proof. (i)

rowi(A
⊤) =

[
(A⊤)i1 · · · (A⊤)im

]
=
[
a1i · · · ami

]
=

a1i...
ami


⊤

= coli(A)
⊤.

(ii) Same as above, mutatis mutandis.

(iii)
((

A⊤)⊤)
ij
=
(
A⊤)

ji
= aij.
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(iv) Easy exercise.

(v)

(A⊤C⊤)ij =
m∑
k=1

(A⊤)ik(C
⊤)kj =

m∑
k=1

akicjk =
m∑
k=1

cjkaki

= (CA)ji =
(
(CA)⊤

)
ij
.

Exercise 2.6.43

Let u,v ∈ Rn, and let A be an n× n matrix. Show that:

1. u⊤ v = u · v;
2. (Au) · v = u · (A⊤ v);
3. Show that every linear transformation f : Rn → R is of

the form f(v) = a · v for some a ∈ Rn.
(Hint: write down the matrix for f and use (1).)

The second property is known as the adjoint property.

Exercise 2.6.44

If A is an n × n matrix, define the trace of A, written tr(A), to
be the sum of the diagonal entries of A.

1. Show that tr(A+ B) = tr(A) + tr(B) (if A,B are n× n
matrices), and that tr(A⊤) = tr(A).

2. Find two matrices A and B such that
tr(AB) 6= tr(A) tr(B).

3. Find two matrices A and B such that
tr(AB) = tr(A) tr(B).

4. Show that, if A and B are n× n matrices, then

(a) tr(AB) = tr(BA); and
(b) tr(ABA−1) = tr(B) (if A is invertible).
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2.7 Inverses in linear algebra

2.7.1 Injective linear functions

Definition 2.7.1

• The null space (or kernel) of a linear function L : U → V
is the solution set of the linear equation L(u) = 0, i.e.,

Null(L) := {u ∈ U | L(u) = 0}.

• The null space of a matrix A ∈ Matm×n(R) is the solution
set of the linear equation Au = 0, i.e.,

Null(A) := {u ∈ Rn | Au = 0}.

The following exercise is a generalisation of Proposition 2.2.12.

Exercise 2.7.2

Prove the following:

(i) For any linear map L : U → V , Null(L) is a linear sub-
space of U .

(ii) For any A ∈ Matm×n(R), Null(A) is a linear subspace of
Rn.

For a linear function, the following Lemma gives a very useful way to
check if it is injective.

Theorem 2.7.3

Let U and V be R-vector spaces, and let L : U → V be a linear
function. Then L is injective if and only if Null(L) = {0}.

Proof. By definition, if x ∈ Null(L) then

L(x) = 0 = L(0).

Thus, if L is injective then x = 0.
For any vectors u1,u2 ∈ U , notice that

L(u1) = L(u2) ⇐⇒ L(u1)− L(u2) = 0 ⇐⇒ L(u1 − u2) = 0

⇐⇒ u1 − u2 ∈ Null(L).

Thus, if Null(L) = {0} then

L(u1) = L(u2) =⇒ u1 − u2 = 0 =⇒ u1 = u2.
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In other words, we have shown that a linear function L : U → V is
injective if and only if for every u ∈ U ,

L(u) = 0 =⇒ u = 0.

Example 2.7.4

Consider the linear function

L : R2 R3[
x
y

] xy
0



Then L

([
x
y

])
=

00
0

 if and only if
[
x
y

]
=

[
0
0

]
, so

Null(L) = {0}.

Thus, L is injective by Theorem 2.7.3. A left-inverse (which
happens to be linear) is

F : R3 R2xy
z

 [
x
y

]

Proposition 2.7.5

Let L : U → V be an injective linear function. If X ⊆ U
is a linearly independent subset, then L(X) ⊆ V is a linearly
independent subset.

Proof. Consider a list of distinct vectors (y1, . . . ,yk) from L(X). We
want to solve the equation

k∑
i=1

ciyi = 0

for the scalars ci. By injectivity of L, we know that there exist distinct
vectors xi ∈ X such that L(xi) = yi, 1 ≤ i ≤ k. Substituting into the
equation we wish to solve and using linearity, we get:

0 =
k∑

i=1

ciL(xi) = L

(
k∑

i=1

cixi

)
.
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Since L is injective, then by Theorem 2.7.3 it must be the case that

k∑
i=1

cixi = 0.

Since the subset X was assumed to be linearly independent, then we
must have

c1 = · · · = ck = 0.

Thus, L(X) is indeed linearly independent.

This states that injective linear functions preserve linear independence!
In other words, given a set of linearly independent inputs, an injective
linear function will produce a set of linearly independent outputs.

Corollary 2.7.6

Let L : U → V be a linear function, and let (b1, . . . ,bn) be an
ordered basis for U . Then

L is injective ⇐⇒ (L(b1), . . . , L(bn)) is linearly independent.

Proof. • ( =⇒ ). This is just a special case of Proposition 2.7.5.

• ( ⇐= ). Suppose that (L(b1), . . . , L(bn)) is linearly indepen-
dent. Let u ∈ Null(L) be arbitrary. We can express it as a linear
combination of the basis as follows

u =
n∑

j=1

cjbj.

Applying L gives us

0 =
n∑

j=1

cjL(bj)

Because (L(b1), . . . , L(bn)) is linearly independent then

c1 = · · · = cn = 0,

so u = 0.
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2.7.2 Surjective linear functions

Remark 2.7.7

Given a linear function L : U → V , by Proposition 2.5.4 its
range L(U) is a linear subspace of its codomain V .

Lemma 2.7.8

Let L : U → V be a linear function, and X ⊆ U . Then

L(SpanX) = SpanL(X).

Proof. • (⊆) Suppose that v ∈ L(SpanX). Then there exist some
vectors xj ∈ X and scalars aj ∈ R such that

v = L

(
k∑

j=1

ajxj

)
=

k∑
j=1

ajL(xj).

Thus, v ∈ SpanL(X).

• (⊇) Conversely, suppose that v ∈ SpanL(X). Then there exist
some vectors xj ∈ X and scalars bj ∈ R such that

v =
l∑

j=1

bjL(xj) = L

(
l∑

j=1

bjxj

)
.

Thus, v ∈ F (SpanX).

Let L : Rn → Rm be a linear function. Given a vector y ∈ Rm, we can
ask if there exists a solution x ∈ Rn to the linear equation

L(x) = y.

This occurs if and only if

y = L(x) = L

(
n∑

j=1

xjej

)
=

n∑
j=1

xjL(ej).

Thus,
y ∈ L(Rn) ⇐⇒ y ∈ Span{L(e1), . . . , L(en)}

We can state this more generally as follows:

Proposition 2.7.9

Let U , V be R-vector spaces, and let L : U → V be a linear
function. Let X ⊆ U be a spanning subset, i.e., SpanX = U .
Then

L is surjective ⇐⇒ Span (L(X)) = V.
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Proof. Since we assumed U = SpanX , then we can apply Lemma
2.7.8 to get our desired result:

L : U → V is surjective ⇐⇒ V = L(U) = L(SpanX) = Span (L(X)) .

The following is merely a special case of Proposition 2.7.9, but we wish
to emphasize this result:

Corollary 2.7.10

Let L : U → V be a linear function, and let (b1, . . . ,bn) be an
ordered basis for U . Then

L is surjective ⇐⇒ Span {L(b1), . . . , L(bn)} = V.

In particular, to determine if a linear function L : Rn → Rm is surjec-
tive, we just need to check that the columns of its standard matrix span
its codomain!

Example 2.7.11

The function L : R3 → R2 from Example 2.7.4 is a linear func-
tion. Furthermore,

Span{L(e1), L(e2), L(e3)} = Span

{[
1
0

]
,

[
0
1

]
,

[
0
0

]}
= R2,

so L is surjective (as expected).

2.7.3 Bijective linear functions

Example 2.7.12

Consider the linear function

L : R2 R[
x
y

]
x+ y

Check that the following functions are right inverses of L:

ins1 : R R2

x

[
x
0

] ,
ins2 : R R2

x

[
0
x

] ,
f : R R2

x

[
x+ 1
−1

]
.
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Solution.
Let’s calculate the following composite rules:

(L ◦ ins1) (x) = L (ins1 (x)) = L

([
x
0

])
= x+ 0 = x = idR(x)

(L ◦ ins2) (x) = L (ins2 (x)) = L

([
0
x

])
= 0 + x = x = idR(x)

(L ◦ f) (x) = L (f (x)) = L

([
x+ 1
−1

])
= (x+ 1) + (−1) = x = idR(x)

Thus, ins1, ins2, and f are all right inverses of L. We see that L, ins1
and ins2 are linear, but f is clearly not linear, so we conclude that a
right inverse of a linear function is not necessarily linear!

However, we can say the following. We will not prove this result in the
course since it requires some techniques from MATHS 250, but it is
not particularly difficult.

Remark 2.7.13

Let L : Rn → Rm be a linear function. Then the following hold:

1. If L is injective then there exists at least one linear left-
inverse to L.

2. If L is surjective then there exists at least one linear right-
inverse to L.

Fortunately, a two-sided inverse of a linear function is guaranteed to be
linear:

Theorem 2.7.14

Let U , V be R-vector spaces, and suppose that L : U → V is a
bijective linear function. Then its inverse L−1 : V → U is also
linear.

Proof. Let v,v1,v2 ∈ V , and let c be a scalar. Using the fact L is linear
and that LL−1 = idV , we get:

L−1(v1 + v2) = L−1(LL−1v1 + LL−1v2)

= L−1L
(
L−1v1 + L−1v2

)
= L−1v1 + L−1v2.

Again, using the same strategy:

L−1(cv) = L−1(cLL−1v)

= L−1L(cL−1v)
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= cL−1v.

Remark 2.7.15

It is quite special that the inverse of a linear function is automati-
cally linear. For comparison, the inverse of a differentiable func-
tion is not necessarily differentiable. Indeed, for the MATHS
130 students, you can check that the function f : R → R given
by the formula f(x) := x3 is differentiable and bijective, but its
inverse fails to be differentiable at the origin.

We will address the problem of actually computing the inverse of a
linear function in Section 2.7.4. Before we do, we want to show two
crucial things about invertibility of linear functions:

1. If L : Rn → Rm is an invertible linear function, then n = m.
2. If L : Rn → Rn is a linear function (with Rn as both its do-

main and codomain), then having either a right- or left-inverse is
sufficient to be invertible.

Theorem 2.7.16

Let L : U → V be a linear function, and let B := (b1, . . . ,bn)
be an ordered basis for U . Then L is bijective if and only if
(L(b1), . . . , L(bn)) is an (ordered) basis for V .

Proof. This is just putting together Corollary 2.7.6 and Corollary 2.7.10.

Continuing the analogy between finite-dimensional vector spaces and
finite sets (pointed out in Remark 2.7.20), notice that the following
Corollary is analogous to Exercise 1.4.19.

Corollary 2.7.17

Let L : Rn → Rm be a linear function. If L is bijective, then
n = m.

Proof. Suppose L is bijective, and consider the standard ordered ba-
sis (e1, . . . , en) for Rn. Then (L(e1), . . . , L(en)) is an ordered basis
for Rm by Theorem 2.7.16. But since dim(Rm) = m, then we apply
Theorem 2.3.22 to conclude that n = m.

We now have all the tools to prove the following. Note the very strong
resemblance to Proposition 1.4.18!
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Proposition 2.7.18

Let L : Rn → Rm be a linear function.

1. If n > m, then L is not injective.
2. If n < m, then L is not surjective.
3. If n = m, then L is injective if and only if it is surjective.

Proof. 1. If L were injective then (Le1, . . . , Len) would be linearly
independent. But since n > m, this would violate Theorem
2.3.22

2. If L were surjective then we would have

Span{Le1, . . . , Len} = Rm.

But since n < m, this would violate Theorem 2.3.22

3. Since n = m, then by Corollary 2.3.23 the list

(Le1, . . . , Len)

is linearly independent if and only it spans the codomain Rm.
Applying Corollaries 2.7.6 and 2.7.10 gives the desired conclu-
sion.

An immediate consequence of Proposition 2.7.18 is that for a linear
function between vector spaces of the same dimension, any left inverses
are automatically right inverses, and vice versa!

Corollary 2.7.19

Let f : Rm → Rn be a function, and let L : Rn → Rm be a
linear function. If n = m then

F is a left inverse of L ⇐⇒ F is a right inverse of L.
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Remark 2.7.20

Because a linear function F : Rn → Rm is uniquely determined
by where it sends the standard basis (e1, . . . , en), F behaves a lot
like a function between finite sets f : N → M , where |N | = n
and |M | = m. Indeed, we encourage you to review Section
1.4.2, and to try to notice some similarities between the results
here and there.
For the curious student, it turns out that this similarity can be
made precise using an area of “meta-mathematics” called cate-
gory theory: the collection of finite-dimensional vector spaces is
a categorification of the natural numbers.

2.7.4 Matrix inverses

We can define left- and right-inverses of matrices in the same way as
we did for functions:

Definition 2.7.21

If A is an m× n matrix, we say that an n×m matrix B is

1. a left-inverse of A if BA = In,

2. a right-inverse of A if AB = Im, and

3. an inverse of A if it is both a left- and right-inverse.

If B is an inverse of A, then we say that the matrix A is invertible
(or non-singular), and that B is its inverse. Uniqueness of the
matrix inverse follows from uniqueness of inverses of functions,
and we write B = A−1.

Remark 2.7.22

Since composition of linear functions corresponds to matrix mul-
tiplication, we can translate the results from the previous three
subsections into matrix language!

Example 2.7.23

If A is an invertible n× n matrix then A⊤ is also invertible and

(A⊤)−1 = (A−1)⊤.

Solution.
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By Theorem 2.6.42, we have

A⊤ (A−1)⊤ = (A−1 A)⊤ = I⊤n = In,

so (A−1)⊤ is the inverse of A⊤.

Example 2.7.24

Recall from Exercise 2.6.35 that the matrix

Rn =

[
cos 2π

n
sin 2π

n

− sin 2π
n

cos 2π
n

]
.

satisfies Rn
n = I2.

• Note that Rn
n = Rn R

n−1
n . Hence, Rn has a right-inverse

and it is Rn−1
n .

• Similarly, we also have Rn
n = Rn−1

n Rn, so Rn−1
n is also a

left-inverse of Rn.
• Therefore, Rn is invertible with inverse R−1

n = Rn−1
n .

Proposition 2.7.25: Properties of matrix inverse

Let A and B be invertible n × n matrices. Then the following
hold:

1. (A−1)−1 = A;
2. (Ak)−1 = (A−1)k for all k ∈ N;
3. (AB)−1 = B−1 A−1;
4. (cA)−1 = 1

c
A−1 for all c ∈ R\{0}.

Proof.
1. This follows directly from the definition. Alternatively, it follows

from the analogous statement for functions.
2. We prove this by induction. Let P (k) be the statement: (Ak)−1 =

(A−1)k.

Base case.
The case k = 0 is trivial, because In is its own inverse.

Inductive step.
For the inductive step, let i ≥ 1 and assume that P (i) is
true, that is, (Ai)−1 = (A−1)i. We will show that P (i + 1)
holds by showing that Ai+1 (A−1)i+1 = In. Note that

Ai+1 (A−1)i+1 = AAi (A−1)i A−1 = AIn A
−1 = AA−1 = In.
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Therefore, by the Principle of Mathematical Induction, we con-
clude that (Ak)−1 = (A−1)k for all k ∈ N.

3.

(AB)(B−1A−1) = A(BB−1)A−1

= AInA
−1

= AA−1

= In.

4. (cA)

(
1

c
A−1

)
= c

(
1

c

)
AA−1 = 1In = In.

By Corollary 2.7.19, in order to determine whether a particular n × n
matrix A is invertible, it suffices to try to solve the system AB = In
for an arbitrary n× n matrix B; this reduces to solving a system of n2

linear equations.

Example 2.7.26

Show that the matrix
[
1 1
1 1

]
is not invertible.

Solution.

If
[
a b
c d

]
is its inverse, then

[
1 1
1 1

][
a b
c d

]
=

[
a+ c b+ d
a+ c b+ d

]
=

[
1 0
0 1

]
.

Equating coefficients yields a system of four linear equations in a, b, c
and d. This system is inconsistent (for example, we have 0 = a+c = 1),

so
[
1 1
1 1

]
is not invertible.

Example 2.7.27

Show that

1 0 2
2 −1 3
4 1 8

 is invertible and find its inverse.

Solution.

Let A =

1 0 2
2 −1 3
4 1 8

. We need to find a matrix B such that AB = I3.
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Let B =

a b c
d e f
g h i

. Now

ad
g

 is a solution to the matrix equation

1 0 2
2 −1 3
4 1 8

xy
z

 =

10
0



and

 be
h

 is a solution to the matrix equation

1 0 2
2 −1 3
4 1 8

xy
z

 =

01
0



and

 c
f
i

 is a solution to the matrix equation

1 0 2
2 −1 3
4 1 8

xy
z

 =

00
1

.
So we need to solve these 3 systems of linear equations. Note that the
left side is the same in all of them, so let us try solving them all at once.1 0 2 1 0 0

2 −1 3 0 1 0
4 1 8 0 0 1

R2 ← R2 − 2R1

R3 ← R3 − 4R11 0 2 1 0 0
0 −1 −1 −2 1 0
0 1 0 −4 0 1

R2 ← R3

R3 ← R21 0 2 1 0 0
0 1 0 −4 0 1
0 −1 −1 −2 1 0


R3 ← R3 +R21 0 2 1 0 0

0 1 0 −4 0 1
0 0 −1 −6 1 1

R1 ← R1 + 2R3

R3 ← −R31 0 0 −11 2 2
0 1 0 −4 0 1
0 0 1 6 −1 −1
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Therefore,

ad
g

 =

−11−4
6

,
 be
h

 =

 2
0
−1

 and

 c
f
i

 =

 2
1
−1

 and so

B =

−11 2 2
−4 0 1
6 −1 −1

.
For a shorthand version, consider the 3× 6 matrix:1 0 2 1 0 0

2 −1 3 0 1 0
4 1 8 0 0 1

 = [A : I3]

and reduce the left hand side to reduced echelon form to get:1 0 0 −11 2 2
0 1 0 −4 0 1
0 0 1 6 −1 −1

 = [I3 : B] = [I3 : A
−1].

General procedure to find matrix inverse

We now state and prove a general procedure for computing the inverse
of a square matrix without solving a system of n2 equations.

Algorithm 2.7.28

To find the inverse of a given n× n matrix A:

1. Form the n× 2n augmented matrix [A | In].
2. Row reduce [A | In] into reduced echelon form.
3. If in the left n × n block, a row of zeros emerges, then

stop (A is not invertible in this case). Otherwise, the left
n×n block must reduce to In; the right n×n block of the
reduced matrix is then A−1.

At the end of this procedure, you can check your answer by computing
AA−1, which should be In.

Proof of the algorithm.
Recall from Corollary 2.7.19 that it suffices to find a square right-
inverse for A: that is, an n× n matrix B with the property that AB =
In. If such a matrix exists, then A is invertible with unique inverse B.

Solving the equation AB = In is equivalent to solving the n matrix
equations A bi = ei for 1 ≤ i ≤ n, where bi is the ith column of
B. Now note that Abi = ei can be solved uniquely if and only if A
is row-reducible to the identity matrix: indeed, a system of equations
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is solvable uniquely if and only if it can be reduced by row-reduction
to a system without free variables that can be solved by back substi-
tution; and such a system has the identity matrix as its coefficient ma-
trix (compare with Theorem 2.1.21). Further, the coefficients of bi are
the coefficients of the (n + 1)th column of the matrix resulting from
row-reducing the augmented matrix [A : ei] to some matrix [In | bi].
The algorithm listed above just carries out this procedure for every i at
once.

Most computer codes, such as, for example MATLAB, do not use Gaus-
sian elimination to find the inverse of a matrix; this is because imperfect
computer arithmetic can significantly affect the process of Gaussian
elimination. You can learn about more accurate and also faster meth-
ods to invert a matrix, or solve a system of linear equations, in a course
on advanced numerical analysis.

Matrix inverses can sometimes be useful to solve systems of linear
equations. Given such a system in the form Ax = y, as in Exam-
ple 2.6.36, if A is invertible, then the system has a unique solution,
namely A−1 y. This is particularly useful if one next wants to solve
another linear system Ax = z, since we have already computed A−1.

Example 2.7.29

If possible, find the inverses of each of the following matrices.

(i) A =

1 2 1
3 1 2
9 −2 5

;
(ii) B =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

.

Solution.

(i) Not invertible:

(ii)


1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1

.
The matrix B in Example 2.7.29 is called lower triangular, because
every non-zero entry appears on or below the diagonal, i.e., if i < j
then Bij = 0. Similarly, a matrix A is called upper triangular if
the only non-zero entries of A appear on or above the diagonal; more
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precisely, if i > j then Aij = 0. The following matrix is an example:
1 0 13 4
0 0 4 −1
0 0 2 0
0 0 0 1

 . (2.2)

A matrix is triangular if it is either upper or lower triangular. Observe
that the result of a row reduction to echelon form will always produce
an upper triangular matrix.

We now show how a very similar procedure can be used to find right-
and left-inverses of matrices.

Example 2.7.30

Find the right-inverses of each of the following matrices.

1.
[
1
2

]
;

2.
[
1 0

]
.

Solution.

1. Let A =

[
1
2

]
. A right inverse B of A must be a 1 × 2 matrix

such that AB = I2. Now, writing B =
[
a b

]
, we have AB =[

a b
2a 2b

]
=

[
1 0
0 1

]
which yields a = 2b = 1 and 2a = b = 0.

This system has no solution, so A does not have a right-inverse.
2. Let A =

[
1 0

]
. A right inverse B of A must be a 2 × 1 matrix

such that AB = I1. Now, writing B =

[
a
b

]
, we have AB =[

a
]
=
[
1
]

which yields a = 1. We can then choose b freely, so A
has infinitely many right-inverses.

Finding left-inverses can be done in a similar fashion.

Exercise 2.7.31

Let a, b, c, d ∈ R, and assume that ad − bc 6= 0. Show that the
matrix

A =

[
a b
c d

]
is invertible, by computing its inverse. Conversely, show that if
ad− bc = 0 then the matrix A is not invertible.
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2.7.5 Elementary matrices

Definition 2.7.32

An elementary matrix is a matrix obtained by applying a single
elementary row operation to the identity matrix.

Since there are three kinds of elementary row operations (recall Sec-
tion 2.1.3), there are three types of elementary matrices.

Example 2.7.33

Starting with I4, we apply the following elementary row opera-
tions to get an elementary matrix.

1. Multiplying the second row by 2:
1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1


2. Adding three times the second row to the fourth row:

1 0 0 0
0 1 0 0
0 0 1 0
0 3 0 1


3. Swapping rows 1 and 3:

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1



Exercise 2.7.34

Let R be an elementary row operation and let E be the corre-
sponding elementary matrix. Verify that the matrix E A is equal
to the matrix obtained by applying the elementary row operation
R to A.

Exercise 2.7.35

Show that the three types of elementary matrices are invertible,
and that the inverse of an elementary matrix is also an elementary
matrix.
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Theorem 2.7.36: Invertible matrix vs elementary matrices

A matrix is invertible if and only if it is a product of elementary
matrices.

Proof. By Exercise 2.7.35 and Proposition 2.7.25 a product of elemen-
tary matrices is invertible. The converse follows immediately from sim-
ilar methods to the proof of Algorithm 2.7.28: if A is invertible, then
A is row-reducible to In; that is, Em · · ·E1 A = In, where E1, . . . , Em

are the elementary matrices corresponding to the row-reduction steps;
it follows immediately that A = E−1

1 · · ·E−1
m , so by Exercise 2.7.35 A

is a product of elementary matrices.

2.8 Determinants
Let f : R2 → R2 be the linear transformation given by[

x
y

]
7→
[
2x
2y

]
.

Note that the matrix associated to f is 2 I2. Now, if we start with the
unit square (of area 1) and apply f , we end up with a square that has
sides of length 2 and area 4; the area of the image under f is, therefore,
4 times the area of the original square. In fact, it is not hard to see that
the image under f of any shape in the plane will have 4 times the area of
the original shape. The number 4 is therefore a fundamental invariant
of f and its associated matrix 2 I2 (with respect to the standard basis).
We will say that 4 is the determinant of this matrix.

More generally, the determinant of a square matrix is a scalar invariant
that encodes the “scaling factor” of the linear transformation described
by the matrix.

As we will see, the determinant also comes equipped with a sign, which
determines whether the linear transformation is orientation-preserving
or not. For example, the linear transformation pictured in Figure 2.11
consists of a reflection in the vertical axis combined with scaling. It
does not preserve the “clockwise orientation” of the plane, so it is not
orientation-preserving, it is orientation reversing. Its determinant will
then be negative.

2.8.1 The 2-dimensional case
The unit square is the square in R2 with vertices (0, 0), (0, 1), (1, 0) and
(1, 1). What happens when we apply the linear transformation corre-

sponding to the matrix
[
a b
c d

]
to this unit square? As shown in Fig-
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f

A B

D C

f(A)f(B)

f(D)f(C)

Figure 2.11: A reflection followed by scaling.

ure 2.12, it gets mapped to the parallelogram with vertices (0, 0), (b, d),
(a, c) and (a + b, c + d). The unit square has area 1 while the image

(0,0)

(b,d)

(a,c)

(a+b,c+d)

bc

bcac
2

ac
2

bd
2

bd
2

Figure 2.12: The action of a 2× 2 matrix.

parallelogram has area

(a+ b) (c+ d)− 2 b c− a c− b d = a d− b c.

We will therefore say that
[
a c
b d

]
has determinant a d− b c and write

this as

det

([
a c
b d

])
= a d− b c.

Exercise 2.8.1

Explain the connection to Exercise 2.7.31.
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How do we establish a general formula in dimension greater than two?
The next section shows that a few simple criteria completely determine
the formula.

2.8.2 The general case

Definition 2.8.2: Determinant

A determinant is a function, denoted det, from the set of square
matrices to R satisfying the following four properties:

Normalisation. det(In) = 1.
Zeroness. If two columns of A are equal then det(A) = 0.
Homogeneity. If one column is multiplied by a scalar then the

determinant is multiplied by that scalar (Figure 2.13a).
Additivity. The function is “additive in each column”; more pre-

cisely, if we consider 3 matrices A,A′, A′′ with the proper-
ties: (a) that all but the ith columns agree; and (b) that the
ith column of A is the sum of the ith columns of A′ and
A′′, then det(A) = det(A′) + det(A′′) (Figure 2.13b).

The conditions of homogeneity and additivity are often listed to-
gether as multilinearity.

Remark 2.8.3: Origins of the concept of determinant

The oldest documents about determinants are known as the
Fukudai and dated 1683. They have been written Seki Takakazu,
also known as Seki Kōwa, who was a leading mathematician in
Japan. You can find out more online; see also the academic paper
“On the Japanese Theory of Determinants” by Yoshio Mikami
[Isis 2(1): 9-36 (1914)].

The result below is crucial, however its proof is outside of the scope of
the course.

Theorem 2.8.4: Uniqueness of the determinant

The determinant is unique, i.e., there is exactly one function from
the set of square matrices to R satisfying the four properties from
Definition 2.8.2.

https://www.jstor.org/stable/223553
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(a) Homogeneity of the determinant.

(b) Multilinearity of the determinant.

Figure 2.13: Geometric properties of the determinant.
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Example 2.8.5: Determinant properties

We give a respective example of each of zeroness, homogeneity,
and additivity:

det

1 2 2
4 5 5
7 8 8

 = 0;

det

1 2 30
4 5 60
7 8 90

 = 10 det

1 2 3
4 5 6
7 8 9

 = det

10 2 3
40 5 6
70 8 9

;
det

1 2 3
4 5 6
7 8 9

+ det

1 2 10
4 5 11
7 8 12

 = det

1 2 3 + 10
4 5 6 + 11
7 8 9 + 12

.
Remark 2.8.6: Geometric interpretation of the determinant

There is a geometric interpretation of the determinant, gener-
alising that of the 2 × 2 case. In R2, the standard basis vec-
tors {e1, e2} define a square; in R3, the standard basis vectors
{e1, e2, e3} define a cube; and generally in Rn, the standard
basis vectors define what is known as a parallelopiped. The
determinant of a linear transformation f : Rn → Rn then mea-
sures the volume of the image of this parallelopiped under the
transformation: that is, det(A) is the (signed) volume of the n-
dimensional parallelopiped determined by the n image vectors
A e1, . . . , A en. The case n = 3 is illustrated in Figure 2.13.

Lemma 2.8.7

The determinant of a square matrix does not change when you
add a multiple of one column to another.

Proof. For a matrix X , let Xi denote the ith column of X . Let r ∈ R,
let A be an n × n matrix and let B be the matrix obtained from A by
adding r times the jth column of A to its ith column. (So B = A,
except for the ith column, which is equal to Bi = Ai + r Aj .) We
now construct the n × n matrix C that is also equal to A, except for
its ith column, which is just Ci = r Aj . Hence, the ith columns of
these matrices satisfy Bi = Ai + Ci and the three matrices agree in
all the other columns. It follows by additivity of the determinant that
det(B) = det(A) + det(C). On the other hand, the ith column of C
is a multiple of the jth column. Combining zeroness and homogeneity,
we find that det(C) = 0. Hence det(A) = det(B), as required.



2.8. DETERMINANTS 165

Lemma 2.8.8

If two columns of a square matrix are interchanged, the determi-
nant is multiplied by −1.

Proof. Let A be an n × n matrix and let i, j ∈ {1, . . . , n}. Consider
the following sequence of column operations, where at each step, the
operation is applied to the result of the preceding one.

1. Start with A; suppose Ai is the ith column of A;
2. Set Aj ← Ai + Aj;
3. Set Ai ← Ai − Aj (so Ai is now Ai − (Ai + Aj) = −Aj);
4. Set Aj ← Ai + Aj (so Aj is now the original Ai);
5. Set Ai ← −Ai (so Ai is now the original Aj).

Hence the resulting matrix is A with its ith and jth column interchanged.
Note also, by Lemma 2.8.7, that all these operations leave the determi-
nant unchanged, except the last operation, which multiplies it by −1,
by homogeneity.

Lemma 2.8.9

If a column of a square matrix is zero, the determinant is 0.

Proof. Let the matrix be A and let the column of zeros by the i-th
column. Let k ∈ R with k 6= 0 and k 6= 1, then by homogeneity,
detA = k detA′ where A′ is the matrix obtained by multiplying the ith
column of A by 1

k
. But since that column is all zeros we have A′ = A.

Thus detA = k detA. Since k 6= 1 we obtain that detA = 0.

Exercise 2.8.10

Prove the above lemma using zeroness instead of homogeneity.

Note that a column of a square matrix is zero if and only if it maps one
of the standard basis vectors to 0: that is, if the parallelopiped spanned
by the images of the basis vectors is ‘flat’. (It is best to visualise this in
R3: see Figure 2.14, where it is the vertical direction that is sent to 0.)
We will not prove the following very useful result:

Theorem 2.8.11

If A is a square matrix, then det(A) = det(A⊤).

Theorem 2.8.11 is very useful, because it implies that, in every state-
ment regarding the determinant, we can replace columns by rows. For
example, together with Lemma 2.8.8, it implies that if two rows of a
matrix are interchanged then the determinant is multiplied by −1.



166 LINEAR ALGEBRA

f

Figure 2.14: The action of a linear transformation f : R3 → R3 associ-
ated with a matrix that has a zero column.

We now know enough about the determinant to calculate it for every
square matrix. Indeed, given a square matrix A, we can use row opera-
tions to reduce it to row reduced echelon form, as in Section 2.1.3. We
know the effect of each row operation on the determinant of A:

1. If B is obtained from A by interchanging two of its rows, then
det(B) = − det(A).

2. If B is obtained from A by multiplying a row of A by r ∈ R,
then det(B) = r det(A).

3. If B is obtained from A by adding a multiple of a row of A to
another row of A, then det(B) = det(A).

We can apply these operations to the matrix, until we either get a zero
row (in which case the determinant is 0), or we reach the identity ma-
trix. We must keep track of the effect of the row operations on the
determinant.

Example 2.8.12

Evaluate the determinant of
[
0 1
2 4

]
.

Solution.
Let

A1 =

[
0 1
2 4

]
A2 =

[
2 4
0 1

]
R2 ↔ R1
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A3 =

[
1 2
0 1

]
R1 ← (1/2)R1

A4 =

[
1 0
0 1

]
R1 ← R1 − 2R2

Using the rules above, we have

det(A2) = − det(A1),

det(A3) = (1/2) det(A2),

det(A4) = det(A3),

det(A4) = 1.

Combining all of these, we get

det(A1) = − det(A2) = −2 det(A3) = −2 det(A4) = −2.

There is a potential problem with this approach: how do we know that
a different choice of row operations will give the same answer? This is
guaranteed by Theorem 2.8.4.

Proposition 2.8.13

Let A be an n× n matrix and let r ∈ R. Show that

det(r A) = rn det(A).

Proof. Multiplying one row of A by r multiplies the determinant by r.
Since there are n rows, multiplying all the rows of A by r multiplies the
determinant by rn.

Definition 2.8.14

A square matrix is diagonal if its only non-zero entries are on
the main diagonal.

Example 2.8.151 0 0
0 3 0
0 0 2

 is a diagonal matrix.

Lemma 2.8.16

The determinant of a diagonal matrix is the product of the ele-
ments on the main diagonal.
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Proof. Start with the identity matrix, and multiply each row by the ap-
propriate scalar.

Corollary 2.8.17

The determinant of either an upper or a lower triangular matrix
is the product of the elements on the main diagonal.

Proof. Suppose first that the matrix is upper triangular. If the last row
is zero, then the determinant is zero and there is a zero on the diagonal,
so the result holds. Otherwise, it has a pivot in the last column, and we
can add multiples of this row to other rows to get zeros above the pivot.
We then move on to the next to last row. If it is not zero, then it has
a pivot, and add multiples of the row to get zeros in that column. We
repeat this process for each row, either getting a row of 0, or a diagonal
matrix, with the same entries on the diagonal as the original matrix. By
Lemma 2.8.17, the determinant of this diagonal matrix is the product
of the diagonal entries, but our row operations have not changed the
determinant, so this is also the determinant of our original matrix.

If our matrix is lower triangular, we can simply take the transpose and
apply the previous paragraph.

Theorem 2.8.18

If A is an n × n matrix, then A is invertible if and only if
det(A) 6= 0.

Proof. We know from earlier that A is invertible if and only if it may
be row reduced to In. (Recall the algorithm for calculating A−1.) Note
that, in that process, the row operations involved do not affect the zero-
ness of the determinant. Therefore, if it can be reduced to In, then it
has non-zero determinant. The only obstruction is getting a row of zero
at some point, in which case det(A) = 0.

Remark 2.8.19: Geometric interpretation of detA = 0

Recall that the geometric meaning of the determinant of a matrix
A is as a measure of how the linear transformation determined
by A changes volumes. Theorem 2.8.18 says that a linear trans-
formation is invertible if and only if it takes shapes of positive
volume and maps them into shapes of zero volume: more pre-
cisely, a linear transformation is not invertible if and only if it
maps the basis vectors of Rn to a set that does not span Rn.
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Exercise 2.8.20: Determinant of a product with an elemen-
tary matrix

If E is an n× n elementary matrix (see Definition 2.7.32) and A
is an n× n matrix, then det(E A) = det(E) det(A).

Theorem 2.8.21: Determinant is multiplicative

If A and B are n×n matrices, then det(AB) = det(A) det(B).

Proof. If A is not invertible, then neither is AB, by Theorem 2.7.19.
In this case, by Theorem 2.8.18, we have both det(AB) = 0 and
det(A) det(B) = 0; in particular, both sides of the equality are zero.

We can thus assume that A is invertible. By Theorem 2.7.36, A is
the product of elementary matrices, say A = E1 · · ·Ek. Using Exer-
cise 2.8.20, it follows that

det(AB) = det(E1 · · ·Ek B)

= det(E1) · · · det(Ek) det(B)

= det(E1 · · ·Ek) det(B)

= det(A) det(B).

Corollary 2.8.22

If A is an n× n invertible matrix, then det(A−1) = det(A)−1.

Proof. By Theorem 2.8.21, we obtain det(A) det(A−1) = det(AA−1) =
det(In) = 1. Therefore, det(A−1) = det(A)−1.

Exercise 2.8.23: Idempotency

Let A be a square matrix such that A2 = A (such matrices are
called idempotent).
What are the possibilities for detA?

Exercise 2.8.24: Nilpotency

Let A be an n × n matrix such that Ak = On,n for some integer
k > 0 (such matrices are called nilpotent).
What are the possibilities for detA?
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Exercise 2.8.25

Find an invertible matrix A, other than the identity, such that both
A and A−1 have all integer entries. Can you find infinitely many?

Exercise 2.8.26

Show that it is not true, in general, that det(A + B) = detA +
detB. Find all pairs of 2 × 2 matrices such that det(A + B) =
detA + detB. (Note: for every n × n matrix A, there are in-
finitely many matrices B that work.)

2.8.3 Cofactors

In this section, we will give another way to compute the determinant of
a matrix, called cofactor expansion.

Definition 2.8.27

Let A be an n × n matrix. Let A(i,j) be the (n − 1) × (n − 1)
matrix obtained from A by deleting its ith row and jth column.
The (i, j)-cofactor of A is

C(i,j) = (−1)i+j det(A(i,j)).

Example 2.8.28

The (2, 3)-cofactor of

 2 0 1
1 0 1
−1 1 0

is

C(2,3) = (−1)2+3 det

([
2 0
−1 1

])
= −1 (2) = −2.

Theorem 2.8.29: Cofactor expansion/Laplace expansion

If A is an n× n matrix and 1 ≤ i ≤ n, then

det(A) = C(i,1) [A]i,1 + C(i,2) [A]i,2 + · · ·+ C(i,n) [A]i,n.

This is called the cofactor expansion or the Laplace expansion of A
along the ith row. Note that, by Theorem 2.8.11, we can also expand
along a column of A.

We will not prove that this is equivalent to our previous definition of
the determinant.
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Example 2.8.30

Use cofactor expansion to compute the determinant of

A =

0 1 2
0 0 1
1 1 2

.
Solution.

det(A) = 0 det

([
0 1
1 2

])
− 1 det

([
0 1
1 2

])
+ 2det

([
0 0
1 1

])
= 0 (−1)− 1 (−1) + 2 (0)

= 1.

Note that, in general, it is preferable to expand along a row or a column
containing many zero entries, as this simplifies computations.

Exercise 2.8.31

We have already seen that

det

[
a b
c d

]
= a d− b c.

Find a similar formula for

det

a b c
d e f
g h i

.

2.8.4 The cross product in R3

We now consider a very special operation that is only valid in R3.

Theorem 2.8.32: Cross product

Let u and v be vectors in R3. Then there is a unique vector
(u× v) ∈ R3 such that

(u× v) ·w = det ([u | v | w ])

for all w ∈ R3. (Here, [u | v | w ] denotes the matrix with the
three columns u, v, and w.)

The vector u×v is called the cross product or the vector product of u
and v. The name “cross product” comes from the notation, whereas the
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name “vector product” comes from the fact that the output is a vector
(as opposed to the scalar product).

Proof. Suppose there exists a vector a :=

a1a2
a3

 such that a · w =

det[u,v,w] for all w ∈ R3. In particular, this should then hold for the
three standard basis vectors { e1, e2, e3 } for R3, that is:

a · e1 = det

u1 v1 1
u2 v2 0
u3 v3 0


a · e2 = det

u1 v1 0
u2 v2 1
u3 v3 0


a · e3 = det

u1 v1 0
u2 v2 0
u3 v3 1

;
now note that a · e1 = a1, a · e2 = a2, and a · e3 = a3. Furthermore,
computing each of the determinants with Laplace expansion down the
final column, we find

a =

a1a2
a3

 =

u2 v3 − u3 v2
u3 v1 − u1 v3
u1 v2 − u2 v1

.
Thus, if a vector with the property stated exists, it must be of this vector
a. It remains to show that a has the property stated in the theorem. Let
w = w1 e1 + w2 e2 + w3 e3 be an arbitrary vector in R3. Then:

a ·w = a · (w1 e1 + w2 e2 + w3 e3)

= w1 (a · e1) + w2 (a · e2) + w3 (a · e3)

= w1 det[u | v | e1] + w2 det[u | v | e2] + w3 det[u | v | e3]

= det[u | v | w1 e1] + det[u | v | w2 e2] + det[u | v | w3 e3]

= det[u | v | w1 e1 + w2 e2 + w3 e3]

= det[u | v | w],

as expected. Thus the vector a satisfies the required properties and it is
uniquely determined, which completes the proof.
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Remark 2.8.33: Generalisations to higher dimensions

The definition of the cross product in Theorem 2.8.32 generalises
to Rn for n other than 3; indeed, one can define a ‘cross product’
of n − 1 vectors v1, . . . , vn−1 ∈ Rn to be a vector a such that
a · w = det[v1, . . . , vn−1,w] for all w ∈ Rn. The properties
of this generalisation (called the wedge product) are far beyond
the scope of this course, but appear very naturally when doing
calculus and geometry in higher dimensions.

The proof of Theorem 2.8.32 above suggests an informal “determinant-
type” notation for the cross product, namely, we often write:

u× v = det

u1 v1 e1

u2 v2 e2

u3 v3 e3

 = det

e1 e2 e3

u1 u2 u3

v1 v2 v3

 .

Indeed, a cofactor expansion along the third column for the former and
first line for the latter “determinant” gives

u× v

= e1 det

([
u2 u3

v2 v3

])
− e2 det

([
u1 u3

v1 v3

])
+ e3 det

([
u1 u2

v1 v2

])
,

as in the proof above.

Example 2.8.34

Calculate the cross product between the vectors

10
1

 and

02
2

.
Solution.
Using informal row expansion, the cross product is given by:10

1

×
02
2

 = det

e1 e2 e3

1 0 1
0 2 2


= e1 det

([
0 1
2 2

])
− e2 det

([
1 1
0 2

])
+ e3 det

([
1 0
0 2

])

= e1 (−1)− e2 (2) + e3 (2) =

−1−2
2

.
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Proposition 2.8.35: Properties of the cross product

For u,v,w ∈ R3 and c ∈ R, we have:

1. (cu)× v = c (u× v) = u× (cv);
2. u× v = −(v × u); (Anticommutativity)
3. u× u = 0;
4. 0× u = u× 0 = 0;
5. u× (v +w) = u× v + u×w. (Distributivity)

Proof. We only prove (1) and (2) and leave the others as exercises.

1. Observe that (cu) × v is the unique vector with the property
(cu × v) ·w = det ([ cu | v | w ]) for all w ∈ R3; by homo-
geneity of the determinant, we know that det ([ cu | v | w ]) =
c det ([u | v | w ]) and so (cu) × v is the unique vector with
the property (cu × v) · w = c det ([u | v | w ]) for all w ∈
R3. However, u × v is the unique vector with the property that
(u×v) ·w = det ([u | v | w ]) for all w ∈ R3; by uniqueness,
we must have that (cu)× v = c (u× v).
The second equality in part (1) is similar.

2. Observe that u × v is the unique vector with the property (u ×
v) · w = det ([u | v | w ]) for all w ∈ R3; by Lemma 2.8.8,
det ([u | v | w ]) = − det ([ v | u | w ]); hence u × v is the
unique vector with the property that u× v = − det[v,u,w] for
all w ∈ R3, which is exactly the defining property of −(v × u).

Alternatively, one may prove the properties of Proposition 2.8.35 by
expanding the sides of each equality out in terms of the vector compo-
nents and checking equality componentwise.

Example 2.8.36

Verify that e1×e2 = e3 and e2×e3 = e1, while e1×e3 = −e2.
Then

e1 × (e1 × e2) = e1 × e3 = −e2,

while
(e1 × e1)× e2 = 0× e2 = 0.

This example illustrates the following

Warning.
In general, u × (v ×w) 6= (u × v) ×w, that is, the cross product is
not associative.
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Exercise 2.8.37

Check that ‖u× v‖2 = ‖u‖2‖v‖2 − (u · v)2.

Theorem 2.8.38

If u,v ∈ R3, then

1. u× v is perpendicular to both u and v, and
2. ‖u× v‖ is the area of the parallelogram generated by u

and v.

Proof.

1. Note that (u × v) · u = det ([u | v | u ]) by definition; since
the first and third columns are both u, the zeroness property of
the determinant implies that det ([u | v | u ]) = 0. Similarly,
(u× v) · v = 0. (See Figure 2.15a.)

2. Consider the parallelogram with sides u and v, as in Figure 2.15b.
The area of P is ‖u‖h = ‖u‖ ‖v‖ | sin (α)|. Now,

‖u‖2 ‖v‖2 | sin (α)|2 = ‖u‖2 ‖v‖2 sin2 (α)

= ‖u‖2 ‖v‖2 (1− cos2 (α))

= ‖u‖2 ‖v‖2
(
1−

(
u · v
‖u‖ ‖v‖

)2
)

= ‖u‖2 ‖v‖2 − (u · v)2

= ‖u× v‖2,

where the last equality comes from Exercise 2.8.37. Taking square
roots on both sides, we find ‖u‖ ‖v‖| sin (α)| = ‖u× v‖.

Example 2.8.39

Find a normal vector to the plane through

11
1

 ,

12
3

 and

32
1

.
Solution.
A normal vector is perpendicular to every direction vector of this plane.
Hence, we first find two linearly independent direction vectors:12

3

−
11
1

 =

01
2

 and

32
1

−
11
1

 =

21
0

.
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u× v

v × u

v

u

(a) Perpendicularity of the cross prod-
uct.

v

u

h

α

P

(b) Parallelogram property of the cross
product.

Figure 2.15: Geometric properties of the cross product.

We can now choose their cross product as a normal vector, because the
cross product will be perpendicular to both of these direction vectors.

Hence,

01
2

×
21
0

 =

−24
−2

 is a normal vector to the plane through

11
1

 ,

12
3

 and

32
1

.
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Example 2.8.40

Find the area of the triangle with vertices

u =

12
1

, v =

21
2

 and w =

33
3

.
Solution.
The area of this triangle is half the area of the parallelogram generated
by two sides of this triangle, say, those given by the vectors v − u and
w−u; see Figure 2.16. Since the area of the parallelogram is the length
of the cross product between these two vectors, we have:

A =
1

2
‖(v − u)× (w − u)‖

=
1

2

∥∥∥∥∥∥
 1
−1
1

×
21
2

∥∥∥∥∥∥
=

1

2

∥∥∥∥∥∥
−30

3

∥∥∥∥∥∥ =
1

2

√
9 + 9 =

3

2

√
2.

u

v

w

v − u

w − u

Figure 2.16: The triangle of Example 2.8.40.

For the next two exercises, recall that the trace tr(A) of a matrix A is
the sum of the diagonal entries of A; see Exercise 2.6.44.

Exercise 2.8.41

Let a ∈ R3. Define a function f : R3 → R3 by f(v) = v × a.

1. Show that f is a linear transformation.
2. Find the matrix A associated with f (with respect to the

standard basis).
3. Is f invertible?
4. What are det(A) and tr(A)?
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Exercise 2.8.42

Repeat Exercise 2.8.41 for the function g : R3 → R3 given by
g(v) = a× v.
Are your results as expected?
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